The role of rudimentary relations in complexity theory

Hugo Volger

Mémoires de la Société Mathématique de France (1984)

  • Volume: 16, page 41-51
  • ISSN: 0249-633X

How to cite

top

Volger, Hugo. "The role of rudimentary relations in complexity theory." Mémoires de la Société Mathématique de France 16 (1984): 41-51. <http://eudml.org/doc/94849>.

@article{Volger1984,
author = {Volger, Hugo},
journal = {Mémoires de la Société Mathématique de France},
keywords = {rudimentary languages; rudimentary relations; complexity classes; alternating Turing machines; exponential quantification},
language = {eng},
pages = {41-51},
publisher = {Société mathématique de France},
title = {The role of rudimentary relations in complexity theory},
url = {http://eudml.org/doc/94849},
volume = {16},
year = {1984},
}

TY - JOUR
AU - Volger, Hugo
TI - The role of rudimentary relations in complexity theory
JO - Mémoires de la Société Mathématique de France
PY - 1984
PB - Société mathématique de France
VL - 16
SP - 41
EP - 51
LA - eng
KW - rudimentary languages; rudimentary relations; complexity classes; alternating Turing machines; exponential quantification
UR - http://eudml.org/doc/94849
ER -

References

top
  1. [1] Bennett, J.H.: On spectra, Ph. D. Thesis, Princeton Univ., Princeton N.J. 1962, 135 pp. 
  2. [2] Berman, L.: The complexity of logical theories, Theoret. Comp. Sci. 11 (1980), 71-77. Zbl0475.03017MR82c:03061b
  3. [3] Book, R., Greibach, S.: Quasirealtime languages, Math. Systems Theory 4 (1970), 97-111. Zbl0188.33102MR43 #1772
  4. [4] Chandra, A.K., Stockmeyer, L.J.: Alternation, in : Proc. 17th IEEE Symp. Found. of Comp. Sci. (1976), 98-108. Zbl0473.68043MR58 #25107
  5. [5] Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation, J. ACM 28 (1981), 114-133. Zbl0473.68043MR83g:68059
  6. [6] Harrow, K.: The bounded arithmetic hierarchy, Information and Control 36 (1978), 102-117. Zbl0374.02019MR57 #16010
  7. [7] Jones, N.D.: Context-free languages and rudimentary attributes, Math. Systems Theory 3 (1969), 102-109, 11 (1977/1978), 379-380. Zbl0179.02202MR41 #9671
  8. [8] Jones, N.D.: Space-bounded reducibility among combinatorial problems, J. Comp. System Sci. 11 (1975), 68-85, 15 (1977), 241. Zbl0317.02039MR53 #2020
  9. [9] King, K.N., Wrathall, C.: Stack languages and log n space, J. Comp. System Sci. 17 (1978), 281-299. Zbl0388.68070MR80h:68069
  10. [10] Kozen, D.C.: On parallelism in Turing machines, in: Proc. 17th IEEE Symp. Found. of Comp. Sci. (1976), 89-97. MR57 #4621
  11. [11] Meloul, J.: Rudimentary predicates, low level complexity classes and related automata, Ph. D. Thesis, Oxford Univ., Oxford 1979, 210 pp. 
  12. [12] Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions with squaring requires exponential space, in : Proc. 13th IEEE Symp. Switching and Automata Theory (1972), 125-129. 
  13. [13] Nepomnjascii, V.A.: Rudimentary predicates and Turing computations, Soviet Math. Dokl. 11 (1970), 1462-1465. Zbl0223.02031MR43 #7326
  14. [14] Nepomnjascii, V.A.: Rudimentary interpretation of two-tape Turing computations, Kibernetika (1970) 2, 29-35. Zbl0245.02034MR52 #7879
  15. [15] Nepomnjascii, V.A.: Examples of predicates not expressible by S-Rud formulae, Kibernetika (1978) 2, 44-46. Zbl0391.03017MR81h:03083
  16. [16] Orponen, P.: Complexity classes of alternating machines with oracles, in: Proc. 10th Coll. Automata, Languages and Programming (1983), Lecture Notes in Comp. Sci. 154, Springer Verlag 1983, 573-584. Zbl0521.68043
  17. [17] Quine, W.V. : Concatenation as a basis for arithmetic, J. Symb. Logic 11 (1946), 105-114. Zbl0063.06362MR8,307b
  18. [18] Simon, J.: Polynomially bounded quantification over higher types and a new hierarchy of the elementary sets, in: Non-classical Logic, Model Theory and Computability, North-Holland Publ. Comp. 1977, 267-281. Zbl0393.03028MR58 #179
  19. [19] Smullyan, R.: Theory of formal systems, Annals of Math. Studies 47, Princeton Univ. Press 1961, 147 pp. Zbl0097.24503MR22 #12042
  20. [20] Stockmeyer, L.J.: The polynomial-time hierarchy, IBM Res. Report RC5379 (1975). 
  21. [21] Stockmeyer, L.J.: The polynomial-time hierarchy, Theoret. Comp. Sci. 3 (1977), 1-22. Zbl0353.02024MR55 #11716
  22. [22] Volger, H.: Turing machines with linear alternation, theories of bounded concatenation and the decision problem of first order theories, Theoret. Comp. Sci. 23 (1983), 333-338. Zbl0538.03035MR84m:68042
  23. [23] Volger, H.: Rudimentary relations and Turing machines with linear alternation, to appear in: Proc. Conf. Recursive Combinatorics, Münster 1983, 6 pp. Zbl0558.68042
  24. [24] Wilkie, A.J.: Applications of complexity theory to ∑0-definability problems in arithmetic, in: Model Theory of Algebra and Arithmetic, Lecture Notes in Math. 834, Springer Verlag 1980, 363-369. Zbl0483.03024MR82b:03085
  25. [25] Wilkie, A.J.: On core structures for Peano arithmetic, in: Logic Coll. '80, North-Holland Publ. Comp. 1982, 311-314. Zbl0517.03030MR84j:03142
  26. [26] Wilkie, A.J., Paris, J.B.: Models of arithmetic and the rudimentary sets, Bull. Math. Soc. Belg. Sér. B 33 (1981), 157-169. Zbl0499.03021MR82k:03074
  27. [27] Wrathall, C.: Subrecursive predicates and automata, Ph. D. Thesis, Harvard Univ., Cambridge Mass. 1975, 156 pp. 
  28. [28] Wrathall, C.: Complete sets and the polynomial-time hierarchy, Theoret. Comp. Sci. 3 (1977), 23-33. Zbl0366.02031MR55 #11717
  29. [29] Wrathall, C.: Rudimentary predicates and relative computation, SIAM J. Computing 7 (1978), 194-209. Zbl0375.68030MR58 #3754
  30. [30] Yu, Y.Y.: Rudimentary relations and formal languages, Ph. D. Thesis, Univ. of California, Berkeley Cal. 1970, 47 pp. 
  31. [31] Yu, Y.Y.: Rudimentary relations and stack languages, Math. Systems Theory 10 (1977), 337-343. Zbl0371.68022MR58 #19399

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.