Intersection rings of spaces of triangles

Alberto Collino; William Fulton

Mémoires de la Société Mathématique de France (1989)

  • Volume: 38, page 75-117
  • ISSN: 0249-633X

How to cite

top

Collino, Alberto, and Fulton, William. "Intersection rings of spaces of triangles." Mémoires de la Société Mathématique de France 38 (1989): 75-117. <http://eudml.org/doc/94883>.

@article{Collino1989,
author = {Collino, Alberto, Fulton, William},
journal = {Mémoires de la Société Mathématique de France},
keywords = {plane triangles; intersection ring; Chow ring},
language = {eng},
pages = {75-117},
publisher = {Société mathématique de France},
title = {Intersection rings of spaces of triangles},
url = {http://eudml.org/doc/94883},
volume = {38},
year = {1989},
}

TY - JOUR
AU - Collino, Alberto
AU - Fulton, William
TI - Intersection rings of spaces of triangles
JO - Mémoires de la Société Mathématique de France
PY - 1989
PB - Société mathématique de France
VL - 38
SP - 75
EP - 117
LA - eng
KW - plane triangles; intersection ring; Chow ring
UR - http://eudml.org/doc/94883
ER -

References

top
  1. [1] A. BIALYNICKI-BIRULA. — Some theorems on actions of algebraic groups. Annals of Math. 98 (1973), 480-497. Zbl0275.14007MR51 #3186
  2. [2] A. BIALYNICKI-BIRULA. — Some properties of the decompositions of algebraic varieties determined by actions of a torus. Bull. de l'Acad. Polonaise des Sci., Série des sci. math. astr. et phys. 24 (1976), 667-674. Zbl0355.14015MR56 #12020
  3. [3] A. CAYLEY. — On the problem of the in-and-circumscribed triangle. Phil. Trans. Royal Soc. London 161 (1871), 369-412 (Collected Papers VIII, 212-257). Zbl03.0297.02JFM03.0297.02
  4. [4] S. DIAZ and J. HARRIS. — Ideals associated to deformations of singular plane curves, preprint. Zbl0707.14022
  5. [5] G. ELLINGSRUD and S.A. STRØMME. — On the homology of the Hilbert scheme of points in the plane. Inventiones Math. 87 (1987), 343-352. Zbl0625.14002MR88c:14008
  6. [6] W. FULTON. — Intersection Theory. Springer-Verlag, 1984. Zbl0541.14005MR85k:14004
  7. [7] W. FULTON, S. KLEIMAN and R. MACPHERSON. — Enumeration under tangency. Springer Lecture Notes 997 (1983), 156-196. Zbl0529.14030MR85d:14073
  8. [8] P. LE BARZ. — La variété des triplets complets, preprint. 
  9. [9] J. ROBERTS and R. SPEISER. — Schubert's enumerative geometry of triangles from a modern viewpoint. Springer Lecture Notes 862 (1981), 272-281. Zbl0488.14014MR83h:14049
  10. [10] J. ROBERTS and R. SPEISER. — Enumerative geometry of triangles. I, Comm. in Alg. 12 (1984), 1213-1255 ; II, Comm. in Alg. 14 (1986), 155-191 ; III, preprint. Zbl0648.14029
  11. [11] F. ROSSELLO LLOMPART and S. XAMBO DESCAMPS. — Computing Chow groups, preprint. Zbl0663.14001
  12. [12] H. SCHUBERT. — Anzahlgeometrische Behandlung des Driecks. Math. Ann. 17 (1880), 153-212. Zbl12.0525.01JFM12.0525.01
  13. [13] J.G. SEMPLE. — The triangle as a geometric variable. Mathematika 1 (1954), 80-88. Zbl0057.37103MR16,614e
  14. [14] S.A. STRØMME. — Rational curves in Grassmann varieties, preprint. Zbl0625.14027
  15. [15] J.A. TYRRELL. — On the enumerative geometry of triangles. Mathematika 6 (1959), 158-164. Zbl0097.15303MR22 #2925

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.