Le papillon de Hofstadter revisité

B. Helffer; P. Kerdelhue; J. Sjöstrand

Mémoires de la Société Mathématique de France (1990)

  • Volume: 43, page 1-87
  • ISSN: 0249-633X

How to cite

top

Helffer, B., Kerdelhue, P., and Sjöstrand, J.. "Le papillon de Hofstadter revisité." Mémoires de la Société Mathématique de France 43 (1990): 1-87. <http://eudml.org/doc/94887>.

@article{Helffer1990,
author = {Helffer, B., Kerdelhue, P., Sjöstrand, J.},
journal = {Mémoires de la Société Mathématique de France},
keywords = {Harper operator; Hofstadter butterfly; spectral gaps},
language = {fre},
pages = {1-87},
publisher = {Société mathématique de France},
title = {Le papillon de Hofstadter revisité},
url = {http://eudml.org/doc/94887},
volume = {43},
year = {1990},
}

TY - JOUR
AU - Helffer, B.
AU - Kerdelhue, P.
AU - Sjöstrand, J.
TI - Le papillon de Hofstadter revisité
JO - Mémoires de la Société Mathématique de France
PY - 1990
PB - Société mathématique de France
VL - 43
SP - 1
EP - 87
LA - fre
KW - Harper operator; Hofstadter butterfly; spectral gaps
UR - http://eudml.org/doc/94887
ER -

References

top
  1. [Au] S. Aubry : The new concept of transition by breaking of analyticity Solid State Sci.8 (1978), 264 MR80d:82034
  2. [Av - Se] J. Avron - R. Seiler : Quantization of the Hall conductance for general multiparticle Schrödinger Hamiltonians. Phys. Rev. Letters Vol. 54, n° 4, Janvier 1985, p. 259-262 MR86f:81175
  3. [Av - Si] J. Avron - B. Simon : 
  4. J. Avron - B. Simon [1] Almost periodic Schrödinger operators, I. Limit Periodic potentials Comm. in Math. Physics. 82 p. 101-120 (1981) Zbl0484.35069
  5. J. Avron - B. Simon [2] Almost periodic Schrödinger operators, II The density of states Duke Math. Journal 50 (1983), 369-391 Zbl0544.35030MR85i:34009a
  6. J. Avron - B. Simon [3] Stability of gaps for periodic potentials under variation of a magnetic field J. Phys. A ; Math. Gen. 18 (1985) p 2199-2205 Zbl0586.35084MR87e:81039
  7. [Az] Ya Azbel : Energy spectrum of a conduction electron in a magnetic field Soviet Physics JETP vol. 19, n° 3 Sept. 1964 
  8. [Be] J. Bellissard : 
  9. J. Bellissard [1] Almost periodicity in solid state Physics and C*-algebras "The Harald Bohr Centennary" Proceedings of the symposium held in Copenhaguen conference on almost periodic functions April : 24-25 1987 ; C. Berg, B. Fuglede Ed. The Royal Academy of Sciences, Editions, Copenhaguen 1989 
  10. J. Bellissard [2] C*-Algebras in solid State Physics-2D Electrons in a uniform magnetic field ; "operator algebras and applications" D.E. Evans and M. Takesaki Eds Cambridge University Press, Vol. 2 (1988) pp 49-76 Zbl0677.46055MR91c:46094
  11. [Be - Li - Te] J. Bellissard - R. Lima - D. Testard : A metal-insulator transition for the almost Mathieu model Comm. in Math. Phys. 88, 207-234 (1983) Zbl0542.35059MR85i:82055
  12. [Be - Si] J. Bellissard - B. Simon : Cantor Spectrum for the Almost Mathieu Equation Journal of functional Analysis, vol. 48, N° 3, Oct 1982 Zbl0516.47018MR84h:81019
  13. [Ben - Pas] Benderskii - L. Pasteur : On the spectrum of the one-dimensional Schrödinger equation with a random potential. Math. USSR Sb. 11, 245 (1970) Zbl0216.37301
  14. [Ch] R.G. Chambers : The wave function of a Bloch electron in a Magnetic field Proc. Phys. Soc. 89 (1966), 695-710 
  15. [C - E - Y] Man Duen Choi, Georges A. Elliott, Noriko Yui : Gauss polynomials and the rotation algebra Preprint Septembre 1988, et Inventiones matematicae Vol 99 Fasc. 2 1990 Zbl0665.46051
  16. [Cl - Wa] F. H. Claro, W. H. Wannier : Magnetic subband structure of electrons in hexagonal lattices Phys. Rev. B19 (1979), 6068-74 
  17. [C - F - K - S] H. L. Cycon - R. G. Froese - W. Kirsch - B. Simon : Schrödinger operators with applications to quantum mechanics and global geometry Texts and monographs in Physics, Springer Verlag Zbl0619.47005
  18. [El] G.A. Elliott : Gaps in the spectrum of an almost periodic Schrödinger operator C.R. Math. Rep. Acad. Sci. Canada 4 (1982) p. 255-259 Zbl0516.46048MR85b:47054
  19. [Gu - He - Tr] J.P. Guillement - B. Helffer - P. Treton : Walk inside Hofstadter's butterfly Journal de Physique France 50 (1989) 2019-2058 
  20. [He - Ro] B. Helffer - D. Robert : Calcul fonctionnel par la transformée de Mellin et opérateurs admissibles Journal of Functional Analysis 53 (1983) p. 246-268 Zbl0524.35103MR85i:47052
  21. [He - Sj] B. Helffer, J. Sjostrand : 
  22. B. Helffer, J. Sjostrand [1] Analyse semi-classique pour l'équation de Harper (avec application à l'étude de l'équation de Schrödinger avec champ magnétique) ; Mémoires de la SMF 1988 Zbl0714.34130
  23. B. Helffer, J. Sjostrand [2] Analyse semi-classique pour l'équation de Harper II preprint nov. 1988 ; à paraître aux mémoires de la SMF 1989 Zbl0714.34131
  24. B. Helffer, J. Sjostrand [3] Semi-classical analysis for Harper's equation III preprint Orsay (avril 1988), à paraître aux mémoires de la SMF 1989 et annoncé au Séminaire EDP de l'école Polytechnique 87-88 Zbl0725.34099
  25. B. Helffer, J. Sjostrand [4] Equation de Schrödinger avec champ magnétique et équation de Harper ; Preprint Dec. 1988 et paru dans "Schrödinger operators", Proceedings, Sønderborg, Denmark, 1988 ; Lecture Notes in Physics n° 345, Springer Verlag Zbl0699.35189
  26. B. Helffer, J. Sjostrand [5] On Diamagnetism and de Haas-Van Alphen effect Preprint Paris-sud, mai 1989 ; à paraître aux annales de l'IHP (section Physique théorique) Zbl0715.35070
  27. [Ho] D. Hofstadter : Energy Levels and Wave functions of Bloch electrons in rational and irrational magnetic fields Phys. Rev. B 14 (1976), 2239-2249 
  28. [J - M] R. Johnson - J. Moser : The rotation number for almost periodic potentials Comm. in Math. Phys. 84, (1982), 403-438 ; 90, (1983), 317-318 Zbl0497.35026MR83h:34018
  29. [Kh] A. Ya Khinchin : Continued fractions Phoenix Science Series (1964) 
  30. [Mo] P. (Van) Mouche : 
  31. P. (Van) Mouche [1] Clustering and Nesting of Energy spectra Proceedings ICIAM 87, Paris la Villette, June 29-July 3 1987 MR89k:81050
  32. P. (Van) Mouche [2] The coexistence problem for the discrete Mathieu operator Preprint Février 88 et Comm. in Math. Physics Vol 122 n° 1, 1989, p. 23-34 Zbl0669.34016MR90e:47027
  33. [Pi-Vo] M. Pimsner, D. Voiculescu : Imbedding the irrational rotation C*-algebra into an AF-algebra Journal Operator theory 4, 1980 p. 211-218 Zbl0525.46031MR82d:46086
  34. [Sh] M.A. Shubin : The spectral theory and the index of elliptic operators with almost periodic coefficients Russian Math. Surveys, 34, (1979), 109-157 Zbl0448.47032MR81f:35090
  35. [Si] B. Simon : Almost periodic Schrödinger operators. A review Advances in applied Mathematics 3 p. 463-490 (1982) Zbl0545.34023MR85d:34030
  36. [T - K - N - N] D. Thouless, M. Kohmoto, M. Nightingale, M. de Nijs : Quantized Hall conductance in two dimensional periodic potential. Phys. Rev. Letters, 49, (1982), p. 405-408 
  37. [Wa] G.H. Wannier : Phys. Status Solidi B 88, 757 (1978) 
  38. [Wilk] M. Wilkinson : 
  39. M. Wilkinson [1] Critical properties of electron eigenstates in incommensurate systems Proc. Royal Society of London A391 p 305-350 (1984) MR86b:81136
  40. M. Wilkinson [2] Von Neumann lattices of Wannier functions for Bloch electrons in a magnetic field Proc. R. Soc. Lond. A 403, p 135-166 (1986) MR87f:81178
  41. M. Wilkinson [3] An exact effective hamiltonian for a perturbed Landau Level Journal of Physics A, Vol. 20, n° 7, 11 May 1987, p. 1761 Zbl0639.47010MR88g:81157
  42. M. Wilkinson [4] An exact renormalization group for Bloch electrons in a magnetic fields. Journal of Physics A, Vol. 20, p. 4337-4354 MR88j:81087

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.