The topology of normal singularities of an algebraic surface and a criterion for simplicity
Publications Mathématiques de l'IHÉS (1961)
- Volume: 9, page 5-22
- ISSN: 0073-8301
Access Full Article
topHow to cite
topMumford, David. "The topology of normal singularities of an algebraic surface and a criterion for simplicity." Publications Mathématiques de l'IHÉS 9 (1961): 5-22. <http://eudml.org/doc/103827>.
@article{Mumford1961,
author = {Mumford, David},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {algebraic geometry},
language = {eng},
pages = {5-22},
publisher = {Institut des Hautes Études Scientifiques},
title = {The topology of normal singularities of an algebraic surface and a criterion for simplicity},
url = {http://eudml.org/doc/103827},
volume = {9},
year = {1961},
}
TY - JOUR
AU - Mumford, David
TI - The topology of normal singularities of an algebraic surface and a criterion for simplicity
JO - Publications Mathématiques de l'IHÉS
PY - 1961
PB - Institut des Hautes Études Scientifiques
VL - 9
SP - 5
EP - 22
LA - eng
KW - algebraic geometry
UR - http://eudml.org/doc/103827
ER -
References
top- [1] H. BEHNKE and H. GRAUERT, Analysis in non-compact Spaces, in Analytic Functions, Princenton, 1960. Zbl0100.29003MR22 #5988
- [2] A. BOREL and J.-P. SERRE, Le Théorème de Riemann-Roch, Bull. Soc. Math. France, 86, 1958. Zbl0091.33004MR22 #6817
- [3] K. BRAUNER, Klassifikation der Singularitǎten Algebroiden Kurven, Abh. Math. Semin. Hamburg, 6, 1928. JFM54.0373.01
- [4] F. ENRIQUES, Le Superficie Algebriche, Zanichelli, Bologna, 1949. Zbl0036.37102MR11,202b
- [5] A. KUROSCH, Theory of Groups, vol. 2, Chelsea, N.Y.
- [6] T. MATSUSAKA, On Algebraic Familes of Positive Divisors, J. Math. Soc. Japan, 5, 1953. Zbl0051.37901MR15,465b
- [7] P. SAMUEL, Multiplicités de certaines composantes singulières, Ill. J. Math., 3, 1959. Zbl0096.35801MR21 #4159
- [8] H. SEIFERT and W. THRELFALL, Lehrbuch der Topologie, Teubner, 1934. Zbl0009.08601JFM60.0496.05
- [9] H. SEIFERT and W. THRELFALL, Variationsrechnung im Grossen, Chelsea, 1951. Zbl0261.49039
- [10] S. SMALE, The Classification of Immersions of Spheres in Euclidean Space, Annals Math., 69, 1959. Zbl0089.18201MR21 #3862
- [11] R. THOM, Forthcoming paper on the differential structures on cells and spheres.
- [12] H. WEYL, Algebraic Theory of Numbers, Princeton, 1940. Zbl0054.02002MR2,37cJFM66.1210.02
- [13] J. H. C. WHITEHEAD, Simplicial Spaces, Nuclei, and m-Groups, Proc. London Math. Soc., 45, 1939. Zbl0022.40702JFM65.1443.01
- [14] O. ZARISKI, On the Topology of Algebroid Singularities, Am. J. Math., 54, 1932. Zbl0004.36902JFM58.0614.02
- [15] O. ZARISKI, The Reduction of Singularities of an Algebraic Surface, Annals Math., 40, 1939. Zbl0021.25303MR1,26dJFM65.1399.03
- [16] O. ZARISKI, Foundations of a General Theory of Birational Correspondences, Trans. Am. Math. Soc., 53, 1943. Zbl0061.33004MR5,11b
- [17] O. ZARISKI, Theory and Applications of Holomorphic Functions on an Algebraic Variety of Arbitrary Characteristic, Memoirs of the Am. Math. Soc., 1951. Zbl0045.24001
- [18] O. ZARISKI, Introduction to the Problem of Minimal Models, J. Math. Soc. Japan, 1958. Zbl0093.33904
- [19] J. E. REEVE, A Note on Fractional Intersection Multiplicities, Rend. Circolo Mat. Palermo, 1, 1958. Zbl0086.14302MR23 #A2109
- [20] H. SEIFERT, Topologie Dreidimensionaler Gefaserter Räume, Acta Math., 60, 1932. Zbl0006.08304JFM59.1241.02
- [21] J. IGUSA, Arithmetic Genera of Normal Varieties in an Algebraic Family, Proc. Nat. Acad. Sci., 41, 1955. Zbl0064.15204MR17,87d
Citations in EuDML Documents
top- Mariusz Koras, A characterization of
- Marcelo Morales, Une propriété asymptotique des puissances symboliques d'un idéal. Application à la théorie de l'intersection sur les surfaces normales
- Angelo Vistoli, Alexander duality in intersection theory
- Friedrich Hirzebruch, The topology of normal singularities of an algebraic surface
- Sandro Manfredini, A combinatorial approach to singularities of normal surfaces
- Alexander Grothendieck, Le groupe de Brauer : II. Théories cohomologiques
- Alexander Grothendieck, Technique de descente et théorèmes d'existence en géométrie algébrique. V. Les schémas de Picard : théorèmes d'existence
- Lê Dũng Tráng, Faisceaux constructibles quasi-unipotents
- Jean Giraud, Improvement of Grauert-Riemenschneider's theorem for a normal surface
- David Marín, Jean-François Mattei, Incompressibilité des feuilles de germes de feuilletages holomorphes singuliers
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.