Stability of mappings, III. Finitely determined map-germs
Publications Mathématiques de l'IHÉS (1968)
- Volume: 35, page 127-156
- ISSN: 0073-8301
Access Full Article
topHow to cite
topMather, John N.. "Stability of $C^\infty $ mappings, III. Finitely determined map-germs." Publications Mathématiques de l'IHÉS 35 (1968): 127-156. <http://eudml.org/doc/103885>.
@article{Mather1968,
author = {Mather, John N.},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {topology},
language = {eng},
pages = {127-156},
publisher = {Institut des Hautes Études Scientifiques},
title = {Stability of $C^\infty $ mappings, III. Finitely determined map-germs},
url = {http://eudml.org/doc/103885},
volume = {35},
year = {1968},
}
TY - JOUR
AU - Mather, John N.
TI - Stability of $C^\infty $ mappings, III. Finitely determined map-germs
JO - Publications Mathématiques de l'IHÉS
PY - 1968
PB - Institut des Hautes Études Scientifiques
VL - 35
SP - 127
EP - 156
LA - eng
KW - topology
UR - http://eudml.org/doc/103885
ER -
References
top- [1] S. LANG, Introduction to Differentiable Manifolds, New York, Interscience, 1962. Zbl0103.15101MR27 #5192
- [2] B. MALGRANGE, Ideals of Differentiable Functions, London, Oxford University Press, 1966. Zbl0177.17902
- [3] J. MATHER, Stability of C∞ mappings : I. The division theorem, Annals of Math., vol. 87, 1968, pp. 89-104 ; II. Infinitesimal stability implies stability (to appear in the Annals of Math.). Zbl0159.24902MR38 #726
- [4] J.-Cl. TOUGERON, Une généralisation du théorème des fonctions implicites. Équivalence des idéaux de fonctions différentiables, C. R. Acad. Sc., Paris, t. 262, pp. 487-489 and pp. 563-565. Zbl0136.03905MR36 #2170
- [5] J.-Cl. TOUGERON, Idéaux de fonctions différentiables, Thèse, Université de Rennes, 1967 (to appear in the Annales de l'Institut Fourier). Zbl0162.18502
Citations in EuDML Documents
top- John N. Mather, Stability of mappings, IV. Classification of stable germs by -algebras
- Nils Dencker, Preparation theorems for matrix valued functions
- John Guckenheimer, Catastrophes and partial differential equations
- M. J. Dias Carneiro, Jacob Palis, Bifurcations and global stability of families of gradients
- Goo Ishikawa, Families of functions dominated by distributions of -classes of mappings
- Alexandru Buium, Killing divisor classes by algebraisation
- Jean-Guy Dubois, Jean-Paul Dufour, Oleg Stanek, La théorie des catastrophes. IV. Déploiements universels et leurs catastrophes
- Mário Jorge Dias Carneiro, Singularities of envelopes of families of submanifolds in
- James Damon, Finite determinacy and topological triviality. II : sufficient conditions and topological stability
- F. Pham, Classification des singularités
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.