The Affine Frame in -adic Analysis
Ming Gen Cui[1]; Huan Min Yao[2]; Huan Ping Liu[2]
- [1] Harbin Institute of Technology Department of Mathematics Wen Hua Xi Road Weihai, Shandong P.R. CHINA
- [2] Harbin Normal University Department of Information Science He Xing Road Harbin, Heilongjiang P.R. CHINA
Annales mathématiques Blaise Pascal (2003)
- Volume: 10, Issue: 2, page 297-303
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topCui, Ming Gen, Yao, Huan Min, and Liu, Huan Ping. "The Affine Frame in $p$-adic Analysis." Annales mathématiques Blaise Pascal 10.2 (2003): 297-303. <http://eudml.org/doc/10491>.
@article{Cui2003,
abstract = {In this paper, we will introduce the concept of affine frame in wavelet analysis to the field of $p$-adic number, hence provide new mathematic tools for application of $p$-adic analysis.},
affiliation = {Harbin Institute of Technology Department of Mathematics Wen Hua Xi Road Weihai, Shandong P.R. CHINA; Harbin Normal University Department of Information Science He Xing Road Harbin, Heilongjiang P.R. CHINA; Harbin Normal University Department of Information Science He Xing Road Harbin, Heilongjiang P.R. CHINA},
author = {Cui, Ming Gen, Yao, Huan Min, Liu, Huan Ping},
journal = {Annales mathématiques Blaise Pascal},
keywords = {wavelet; affine frame; -adic analysis},
language = {eng},
month = {7},
number = {2},
pages = {297-303},
publisher = {Annales mathématiques Blaise Pascal},
title = {The Affine Frame in $p$-adic Analysis},
url = {http://eudml.org/doc/10491},
volume = {10},
year = {2003},
}
TY - JOUR
AU - Cui, Ming Gen
AU - Yao, Huan Min
AU - Liu, Huan Ping
TI - The Affine Frame in $p$-adic Analysis
JO - Annales mathématiques Blaise Pascal
DA - 2003/7//
PB - Annales mathématiques Blaise Pascal
VL - 10
IS - 2
SP - 297
EP - 303
AB - In this paper, we will introduce the concept of affine frame in wavelet analysis to the field of $p$-adic number, hence provide new mathematic tools for application of $p$-adic analysis.
LA - eng
KW - wavelet; affine frame; -adic analysis
UR - http://eudml.org/doc/10491
ER -
References
top- M.G. Cui, Note on the wavelet transform in the field of p-adic numbers, Appl. and Computational hormonic Analgsis 13 (2002), 162-168 Zbl1022.42025MR1942750
- I. Daubechies, A. Grossman, Y. Meyer, Painless nonorthogonal expansion, J. Math. Phys. 27 (1986), 1271-1283 Zbl0608.46014MR836025
- E. Ch. Heil, F. Walnut, Continuous and discrete Wavelet transforms, SIAM Review 31 (1989), 628-666 Zbl0683.42031MR1025485
- B. Lian, K. Liu, S.-T. Yau, Mirror Principle I, Asian J. Math. 4 (1997), 729-763 Zbl0953.14026MR1621573
- S.V Kozyrev, Wavelet theory as -adic spectral analysis, Izv. Russ. Akad. Nauk, Ser. Math. 66 (2002), 149-158 Zbl1016.42025MR1918846
- V.S Vladimirov, I.V Volovich, E.I Zelenov, p-adic analysis and Mathematical Physics, (1994), World Scientific, 38 -112 Zbl0812.46076MR1288093
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.