Remarques sur l'hypercontractivité et l'évolution de l'entropie pour des chaînes de Markov finies

Laurent Miclo

Séminaire de probabilités de Strasbourg (1997)

  • Volume: 31, page 136-167

How to cite

top

Miclo, Laurent. "Remarques sur l'hypercontractivité et l'évolution de l'entropie pour des chaînes de Markov finies." Séminaire de probabilités de Strasbourg 31 (1997): 136-167. <http://eudml.org/doc/113948>.

@article{Miclo1997,
author = {Miclo, Laurent},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {Sobolev logarithmic inequalities; hypercontractivity; simulated annealing algorithms},
language = {fre},
pages = {136-167},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Remarques sur l'hypercontractivité et l'évolution de l'entropie pour des chaînes de Markov finies},
url = {http://eudml.org/doc/113948},
volume = {31},
year = {1997},
}

TY - JOUR
AU - Miclo, Laurent
TI - Remarques sur l'hypercontractivité et l'évolution de l'entropie pour des chaînes de Markov finies
JO - Séminaire de probabilités de Strasbourg
PY - 1997
PB - Springer - Lecture Notes in Mathematics
VL - 31
SP - 136
EP - 167
LA - fre
KW - Sobolev logarithmic inequalities; hypercontractivity; simulated annealing algorithms
UR - http://eudml.org/doc/113948
ER -

References

top
  1. [1] D. Bakry. L'hypercontractivité et son utilisation en théorie des semigroupes. In P. Bernard, editor, Lectures on Probability Theory. Ecole d'Eté de Probabilités de Saint-Flour XXII-1992, Lecture Notes in Mathematics1581. Springer-Verlag, 1994. Zbl0856.47026MR1307413
  2. [2] D. Concordet. Estimation de la densité du recuit simulé. Annales de l'Institut Henri Poincaré, 30(2):265-302, 1994. Zbl0802.60092MR1277001
  3. [3] P. Diaconis and L. Saloff-Coste. Nash inequalities for finite Markov chains. A paraitre dans Journal of Theoretical Probability, 1992. Zbl0870.60064MR1385408
  4. [4] P. Diaconis and L. Saloff-Coste. Logarithmic Sobolev inequalities for finite Markov chains. Préprint, Octobre 1995. MR1364885
  5. [5] J.A. Fill. Eigenvalue bounds on convergence to stationarity for nonreversible Markov chains, with an application to the exclusion process. The Annals of Applied Probability, 1(1):62-87, 1991. Zbl0726.60069MR1097464
  6. [6] M.I. Freidlin and A.D. Wentzell. Random Perturbations of Dynamical Systems. A Series of Comprehensive Studies in Mathematics260. Springer-Verlag, 1984. Zbl0522.60055MR722136
  7. [7] A. Frigerio and G. Grillo. Simulated annealing with time-dependent energy function. Mathematische Zeitschrift, 213:97-116, 1993. Zbl0790.90058MR1217673
  8. [8] L. Gross. Logarithmic Sobolev inequalities. American Journal of Mathematics, 97(4):1061-1083, 1976. Zbl0318.46049MR420249
  9. [9] R. Holley and D. Stroock. Logarithmic Sobolev inequalities and stochastic Ising models. Journal of Statistical Physics, 46:1159-1194, 1987. Zbl0682.60109MR893137
  10. [10] R. Holley and D. Stroock. Simulated annealing via Sobolev inequalities. Communications in Mathematical Physics, 115:553-569, 1988. Zbl0643.60092MR933455
  11. [11] C.R. Hwang and S.J. Sheu. Large-time behavior of perturbed diffusion Markov processes with applications to the second eigenvalue problem for Fokker-Planck operators and simulated annealing. Acta Applicandae Mathematicae, 19:253-295, 1990. Zbl0708.60056MR1077861
  12. [12] C.R. Hwang and S.J. Sheu. Singular perturbed Markov chains and exact behaviors of simulated annealing processes. Journal of Theoretical Probability, 5(2):223-249, 1992. Zbl0755.60047MR1157983
  13. [13] T. Kato. Perturbation Theory for Linear Operators. Classics in Mathematics. Springer, 1980. Zbl0435.47001MR1335452
  14. [14] L. Miclo. Recuit simulé sans potentiel sur un ensemble fini. In J. Azéma, P.A. Meyer, and M. Yor, editors, Séminaire de Probabilités XXVI, Lecture Notes in Mathematics1526, pages 47-60. Springer-Verlag, 1992. Zbl0770.60090MR1231982
  15. [15] L. Miclo. Une étude des algorithmes de recuit simulé sous-admissibles. Annales de la Faculté des sciences de Toulouse, 4:819-877, 1995. Zbl0857.60071MR1623480
  16. [16] L. Miclo. Sur les problèmes de sortie discrets inhomogènes. Préprint à paraître dans The Annals of Applied Probability, 1995. Zbl0870.60062MR1422980
  17. [17] L. Miclo. Sur les temps d'occupations des processus de Markov finis inhomogènes à basse température. Préprint, 1995. MR1639780
  18. [18] O.S. Rothaus. Diffusion on compact Riemannian manifolds and logarithmic Sobolev inequalities. Journal of Functional Analysis, 42:102-109, 1981. Zbl0471.58027MR620581
  19. [19] D.W. Stroock. Logarithmic Sobolev inequalities for Gibbs states. In G. Dell'Antonio and U. Mosco, editors, Dirichlet Forms, Lecture Notes in Mathematics1563, pages 194-228. Springer-Verlag, 1993. Zbl0801.60056MR1292280
  20. [20] A. Trouvé. Parallélisation massive du recuit simulé. PhD thesis, Université Paris 11, Janvier 1993. Thèse de doctorat. Zbl0732.60078

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.