Dynamics of stochastic approximation algorithms
Séminaire de probabilités de Strasbourg (1999)
- Volume: 33, page 1-68
Access Full Article
topHow to cite
topBenaïm, Michel. "Dynamics of stochastic approximation algorithms." Séminaire de probabilités de Strasbourg 33 (1999): 1-68. <http://eudml.org/doc/114007>.
@article{Benaïm1999,
author = {Benaïm, Michel},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {dynamical systems; Lyapunov functions; asymptotic pseudotrajectories; limit sets; attractor; shadowing; empirical occupation measure},
language = {eng},
pages = {1-68},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Dynamics of stochastic approximation algorithms},
url = {http://eudml.org/doc/114007},
volume = {33},
year = {1999},
}
TY - JOUR
AU - Benaïm, Michel
TI - Dynamics of stochastic approximation algorithms
JO - Séminaire de probabilités de Strasbourg
PY - 1999
PB - Springer - Lecture Notes in Mathematics
VL - 33
SP - 1
EP - 68
LA - eng
KW - dynamical systems; Lyapunov functions; asymptotic pseudotrajectories; limit sets; attractor; shadowing; empirical occupation measure
UR - http://eudml.org/doc/114007
ER -
References
top- Akin, E. (1993). The General Topology of Dynamical Systems. American Mathematical Society, Providence. Zbl0781.54025MR1219737
- Arthur, B., Ermol'ev, Y., and Kaniovskii, Y. (1983). A generalized urn problem and its applications. Cybernetics, 19:61-71. Zbl0534.90049
- Arthur, B.M. (1988). Self-reinforcing mechanisms in economics. In W, A. P., Arrow, K. J., and Pines, D., editors,The Economy as an Evolving Complex System, SFI Studies in the Sciences of Complexity. Addison-Wesley. MR1120101
- Benaïm, M. (1996). A dynamical systems approach to stochastic approximations. SIAM Journal on Control and Optimization, 34:141-176. Zbl0841.62072MR1377706
- Benaïm, M. (1997). Vertex reinforced random walks and a conjecture of Pemantle. The Annals of Probability, 25:361-392. Zbl0873.60044MR1428513
- Benaïm, M. and Hirsch, M.W. (1994). Learning processes, mixed equilibria and dynamical systems arising from repeated games. Submitted.
- Benaïm, M. and Hirsch, M.W. (1995a). Chain recurrence in surface flows. Discrete and Continuous Dynamical Systems, 1(1):1-16. Zbl0871.58062MR1355862
- Benaïm, M. and Hirsch, M.W. (1995b). Dynamics of morse-smale urn processes. Ergodic Theory and Dynamical Systems, 15:1005-1030. Zbl0846.60054MR1366305
- Benaïm, M. and Hirsch, M.W. (1996). Asymptotic pseudotrajectories and chain recurrent flows, with applications. J. Dynam. Differential Equations, 8:141-176. Zbl0878.58053MR1388167
- Benaïm, M. and Schreiber, S.J. (1997). Weak asymptotic pseudotrajectories for semiflows: Ergodic properties. Preprint. Zbl0998.37013
- Benveniste, A., Métivier, M., and Priouret, P. (1990). Stochastic Approximation and Adaptive Algorithms. Springer-Verlag, Berlin and New York. Zbl0752.93073MR1082341
- Bowen, R. (1975). Omega limit sets of Axiom A diffeomorphisms. J. Diff. Eq, 18:333-339. Zbl0315.58019MR413181
- Brandière, O. (1996). Autour des pièges des algorithmes stochastiques. Thèse de Doctorat, Université de Marne-la-Vallée.
- Brandière., O. (1997). Some pathological traps for stochastic approximation. SIAM Journal on Control and Optimization. To Appear. Zbl0980.62068MR1618037
- Brandière, O. and Duflo., M. (1996). Les algorithmes stochastique contournent ils les pièges. Annales de l'IHP, 32:395-427. Zbl0849.62043MR1387397
- Conley, C.C. (1978). Isolated invariant sets and the Morse index. CBMS Regional conference series in mathematics. American Mathematical Society, Providence. Zbl0397.34056MR511133
- Delyon, B. (1996), General convergence results on stochastic approximation. IEEE trans. on automatic control, 41:1245-1255. Zbl0867.93075MR1409470
- Duflo, M. (1990). Méthodes Récursives Aléatoires. Masson. English Translation: Random Iterative Models, Springer Verlag1997. Zbl0703.62084
- Duflo, M. (1996). Algorithmes Stochastiques. Mathématiques et Applications. Springer-Verlag. Zbl0882.60001MR1612815
- Duflo, M. (1997). Cibles atteignables avec une probabilité positive d'après M. BENAIM. Unpublished manuscript.
- Ethier, S.N.and Kurtz, T.G. (1986). Markov Processes, Characterization and Convergence. John Wiley and Sons, Inc. Zbl0592.60049MR838085
- Fort, J.C.and Pages, G. (1994). Résaux de neurones: des méthodes connexionnistes d'apprentissage. Matapli, 37:31-48.
- Fort, J.C. and Pages, G. (1996). Convergence of stochastic algorithms: From Kushner-Clark theorem to the lyapounov functional method. Adv. Appl. Prob, 28:1072-1094. Zbl0881.62085MR1418247
- Fort, J.C. and Pages, G. (1997). Stochastic algorithm with non constant step: a.s. weak convergence of empirical measures. Preprint.
- Fudenberg, D. and Kreps, K. (1993). Learning mixed equilibria. Games and Econom. Behav., 5:320-367. Zbl0790.90092MR1227915
- Fudenberg, F. and Levine, D. (1998). Theory of Learning in Games. MIT Press, Cambridge, MA. In Press. Zbl0939.91004MR1629477
- Hartman, P. (1964). Ordinary Differential Equationq. Wiley, New York. Zbl0125.32102MR171038
- Hill, B.M., Lane, D., and Sudderth, W. (1980). A strong law for some generalized urn processes. Annals of Probability, 8:214-226. Zbl0429.60021MR566589
- Hirsch, M.W. (1976). Differential Topology. Springer-Verlag, Berlin, New York, Heidelberg. Zbl0356.57001MR448362
- Hirsch, M.W. (1994). Asymptotic phase, shadowing and reaction-diffusion systems. In Differential equations, dynamical systems and control science, volume 152 of Lectures notes in pure and applied mathematics, pages 87-99. Marcel Dekker, New-York. Zbl0795.93055MR1243195
- Hirsch, M.W. and Pugh, C.C. (1988). Cohomology of chain recurrent sets. Ergodic Theory and Dynamical Systems, 8:73-80. Zbl0643.54039MR939061
- Kaniovski, Y. and Young, H. (1995). Learning dynamics in games with stochastic perturbations. Games and Econom. Behav., 11:330-363. Zbl0841.90124MR1360043
- Kiefer, J. and Wolfowitz, J. (1952). Stochastic estimation of the maximum of a regression function. Ann. Math. Statis, 23:462-466. Zbl0049.36601MR50243
- Kushner, H.J. and Clarck, C.C. (1978). Stochastic Approximation for Constrained and Unconstrained Systems. Springer-Verlag, Berlin and New York. Zbl0381.60004MR499560
- Kushner, H.J. and Yin, G.G. (1997). Stochastic Approximation Algorithms and Applications. Springer-Verlag, New York. Zbl0914.60006MR1453116
- Ljung, L. (1977). Analysis of recursive stochastic algorithms. IEEE Trans. Automat. Control., AC-22:551-575. Zbl0362.93031MR465458
- Ljung, L. (1986). System Identification Theory for the User. Prentice Hall, Englewood Cliffs, NJ. Zbl0615.93004
- Ljung, L. and Söderström, T. (1983). Theory and Practice of Recursive Identification. MIT Press, Cambridge, MA. Zbl0548.93075MR719192
- Mañé, R. (1987). Ergodic Theory and Differentiable Dynamics. Springer-Verlag, New York. Zbl0616.28007MR889254
- Métivier, M. and Priouret, P. (1987). Théorèmes de convergence presque sure pour une classe d'algorithmes stochastiques à pas décroissant. Probability Theory and Related Fields, 74:403-428. Zbl0588.62153MR873887
- Munkres, J.R. (1975). Topology a first course. Prentice Hall. Zbl0306.54001MR464128
- Nevelson, M.B.and Khasminskii, R.Z. (1976). Stochastic Approximation and Recursive Estimation. Translation of Math. Monographs. American Mathematical Society, Providence.
- Pemantle, R. (1990). Nonconvergence to unstable points in urn models and stochastic approximations. Annals of Probability, 18:698-712. Zbl0709.60054MR1055428
- Pemantle, R. (1992). Vertex reinforced random walk. Probability Theory and Related Fields, 92:117-136. Zbl0741.60029MR1156453
- Robbins, H. and Monro, S. (1951). A stochastic approximation method. Ann. Math. Statis, 22:400-407. Zbl0054.05901MR42668
- Robinson, C.. (1977). Stability theorems and hyperbolicity in dynamical systems. Rocky Journal of Mathematics, 7:425-434. Zbl0375.58016MR494300
- Robinson, C. (1995). Introduction to the Theory of Dynamical Systems. Studies in Advances Mathematics. CRC Press, Boca Raton. MR1396532
- Schreiber, S.J. (1997). Expansion rates and Lyapunov exponents. Discrete and Conts. Dynam. Sys., 3:433-438. Zbl0948.37019MR1444204
- Shub, M. (1987). Global Stability of Dynamical Systems. Springer-Verlag, Berlin, New York, Heidelberg. Zbl0606.58003MR869255
- Stroock, D.W. (1993). Probability Theory. An analytic view. Cambridge University Press. Zbl0925.60004MR1267569
- White, H. (1992). Artificial Neural Networks: Approximation and Learning Theory. Blackwell, Cambridge, Massachussets. MR1203316
Citations in EuDML Documents
top- Gilles Pagès, A two armed bandit type problem revisited
- Gilles Pagès, A two armed bandit type problem revisited
- Gilles Pagès, Sur quelques algorithmes récursifs pour les probabilités numériques
- Gilles Pagès, Sur quelques algorithmes récursifs pour les probabilités numériques
- Aline Kurtzmann, The ODE method for some self-interacting diffusions on ℝd
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.