On the orbital function of discrete groups in negative curvature

Thomas Roblin[1]

  • [1] Université de Paris VI, Laboratoire de Probabilités et Modèles Aléatoires (UMR 7599), Boî te Courrier 188, 4 place Jussieu, 75252 Paris Cedex 05 (France)

Annales de l’institut Fourier (2002)

  • Volume: 52, Issue: 1, page 145-151
  • ISSN: 0373-0956

Abstract

top
We precise the exponential behavior of the orbital counting function of any discrete isometries group in negative curvature.

How to cite

top

Roblin, Thomas. "Sur la fonction orbitale des groupes discrets en courbure négative." Annales de l’institut Fourier 52.1 (2002): 145-151. <http://eudml.org/doc/115970>.

@article{Roblin2002,
abstract = {Nous précisons le comportement exponentiel de la fonction orbitale d'un quelconque groupe discret d'isométries en courbure négative.},
affiliation = {Université de Paris VI, Laboratoire de Probabilités et Modèles Aléatoires (UMR 7599), Boî te Courrier 188, 4 place Jussieu, 75252 Paris Cedex 05 (France)},
author = {Roblin, Thomas},
journal = {Annales de l’institut Fourier},
keywords = {discrete groups; hyperbolic geometry; conform densities},
language = {fre},
number = {1},
pages = {145-151},
publisher = {Association des Annales de l'Institut Fourier},
title = {Sur la fonction orbitale des groupes discrets en courbure négative},
url = {http://eudml.org/doc/115970},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Roblin, Thomas
TI - Sur la fonction orbitale des groupes discrets en courbure négative
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 1
SP - 145
EP - 151
AB - Nous précisons le comportement exponentiel de la fonction orbitale d'un quelconque groupe discret d'isométries en courbure négative.
LA - fre
KW - discrete groups; hyperbolic geometry; conform densities
UR - http://eudml.org/doc/115970
ER -

References

top
  1. M. Bourdon, Structure conforme au bord et flot géodésique d'un CAT(-1)-espace, L'Ens. Math. 41 (1995), 63-102 Zbl0871.58069MR1341941
  2. E. Ghys, P. de la Harpe, Sur les groupes hyperboliques d'après Gromov, 83 (1990), Birkhäuser Zbl0731.20025MR1086648
  3. V. Kaimanovich, Invariant measures of the geodesic flow and measures at infinity on negatively curved manifolds, Ann. Inst. Henri Poincaré, Phys. Theor. 53 (1990), 361-393 Zbl0725.58026MR1096098
  4. A. Manning, Topological entropy for geodesic flows, Ann. Math. 110 (1979), 567-573 Zbl0426.58016MR554385
  5. G.A. Margulis, Applications of ergodic theory to the investigation of manifolds of negative curvature, Funct. Anal. Appl. 3 (1969), 335-336 Zbl0207.20305MR257933
  6. P.J. Nicholls, The ergodic theory of discrete groups, (1989), Cambridge University Press Zbl0674.58001MR1041575
  7. S.J. Patterson, The limit set of a Fuchsian group, Acta Math. 136 (1976), 241-273 Zbl0336.30005MR450547
  8. M. Pollicott, R. Sharp, Orbit counting for some discrete groups acting on simply connected manifolds with negative curvature, Invent. Math. 117 (1994), 275-302 Zbl0804.58009MR1273266
  9. T. Roblin, Sur la théorie ergodique des groupes discrets en géométrie hyperbolique, (1999) 
  10. D. Sullivan, The density at infinity of a discrete group of hyperbolic motions, Publ. Math. I.H.E.S. 50 (1979), 171-202 Zbl0439.30034MR556586
  11. D. Sullivan, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math. 153 (1984), 259-277 Zbl0566.58022MR766265

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.