A mixed method for 4th order problems using linear finite elements

Reinhard Scholz

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1978)

  • Volume: 12, Issue: 1, page 85-90
  • ISSN: 0764-583X

How to cite

top

Scholz, Reinhard. "A mixed method for 4th order problems using linear finite elements." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 12.1 (1978): 85-90. <http://eudml.org/doc/193314>.

@article{Scholz1978,
author = {Scholz, Reinhard},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {eng},
number = {1},
pages = {85-90},
publisher = {Dunod},
title = {A mixed method for 4th order problems using linear finite elements},
url = {http://eudml.org/doc/193314},
volume = {12},
year = {1978},
}

TY - JOUR
AU - Scholz, Reinhard
TI - A mixed method for 4th order problems using linear finite elements
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1978
PB - Dunod
VL - 12
IS - 1
SP - 85
EP - 90
LA - eng
UR - http://eudml.org/doc/193314
ER -

References

top
  1. 1. F. BREZZI and P. A. RAVIART, Mixed Finite Element Methods for Mh Order Elliptic Equations (to appear). Zbl0434.65085
  2. 2. P. G. CIARLET and P. A. RAVIART, Interpolation Theory Over Curved Elements, with Applications to Finite Element Methods, Computer Meth. Appl. Mech. Engrg., 1, 1972, pp. 217-249. Zbl0261.65079MR375801
  3. 3. P. G. CIARLET and P. A. RAVIART, A Mixed Finite Element Method for the Biharmonic Equation in Mathematical Aspects of Finite Elements in Partial Differential Equations, C. DEBOOR, Ed., Proc. Symp. Math. Res. Center, Univ. Wisconsin, April 1-3, 1974, Academic Press, New York - San Francisco- London, 1974, pp. 125-145. Zbl0337.65058MR657977
  4. 4. J. FREHSE and R. RANNACHER, Eine L 1 -Fehlerabschätzung für diskrete Grundlösungen in der Methode der finiten Elemente, Bonner Math. Schriften, 89, 1976, pp. 92-114. Zbl0359.65093MR471370
  5. 5. S. G. MDCHLIN, The Problem of the Minimum of a Quadratic Functional, Holden-Day, Inc., San Francisco - London - Amsterdam, 1965. Zbl0121.32801MR171196
  6. 6. J. NITSCHE, L -Convergence of Finite Element Approximations, Rom, 1975 (to appear). Zbl0362.65088MR568857
  7. 7. J. NITSCHE, L i n f t y -convergence of the Ritz-method with linear finite elements for second order elliptic boundary value problems (to appear in the anniversary volume dedicated to academician I. N. Vekua). Zbl0424.35033MR513396
  8. 8. R. RANNACHER, Punktweise Konvergenz der Methode der finiten Elemente beim Plattenproblem, Manuscripta Math., 19, 1976, pp. 401-416. Zbl0383.65061MR423841
  9. 9. R. SCHOLZ, Approximation von Sattelpunkten mit finiten Elementen, Bonner Math. Schriften, 89, 1976, pp. 53-66. Zbl0359.65096MR471377
  10. 10. M. ZLAMAL, Curved Elements in the Finite Element Method, I. S.LA.M. J. Numer. Anal., 10, 1973, pp. 229-240; II. S.I.A.M. J. Numer. Anal.,11, 1974, pp. 347-362. Zbl0285.65067MR395263

Citations in EuDML Documents

top
  1. Mohamed Amara, Christine Bernardi, Convergence of a finite element discretization of the Navier-Stokes equations in vorticity and stream function formulation
  2. Pulin K. Bhattacharyya, Neela Nataraj, On the combined effect of boundary approximation and numerical integration on mixed finite element solution of 4th order elliptic problems with variable coefficients
  3. Rolf Rannacher, On nonconforming an mixed finite element methods for plate bending problems. The linear case
  4. T. Scapolla, A mixed finite element method for the biharmonic problem
  5. R. S. Falk, J. E. Osborn, Error estimates for mixed methods
  6. Daniele Boffi, Franco Brezzi, Lucia Gastaldi, On the convergence of eigenvalues for mixed formulations

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.