Incremental methods in nonlinear, three-dimensional, incompressible elasticity

Robert Nzengwa

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1988)

  • Volume: 22, Issue: 2, page 311-342
  • ISSN: 0764-583X

How to cite

top

Nzengwa, Robert. "Incremental methods in nonlinear, three-dimensional, incompressible elasticity." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 22.2 (1988): 311-342. <http://eudml.org/doc/193532>.

@article{Nzengwa1988,
author = {Nzengwa, Robert},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {pure displacement; pure traction boundary-value problems; dead; live loads; existence; convergence},
language = {eng},
number = {2},
pages = {311-342},
publisher = {Dunod},
title = {Incremental methods in nonlinear, three-dimensional, incompressible elasticity},
url = {http://eudml.org/doc/193532},
volume = {22},
year = {1988},
}

TY - JOUR
AU - Nzengwa, Robert
TI - Incremental methods in nonlinear, three-dimensional, incompressible elasticity
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1988
PB - Dunod
VL - 22
IS - 2
SP - 311
EP - 342
LA - eng
KW - pure displacement; pure traction boundary-value problems; dead; live loads; existence; convergence
UR - http://eudml.org/doc/193532
ER -

References

top
  1. [1] R. ABRAHAM and J. ROBBIN, Transversal Mappings and Flows, New York (1967). Zbl0171.44404MR240836
  2. [2] R. A. ADAMS, Sobolev Spaces, Academic Press, New York (1975). Zbl0314.46030MR450957
  3. [3] S. AGMON, A. DOUGLIS and L. NIRENBERG; Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math XII (1959), 623-727. Zbl0093.10401MR125307
  4. [4] S. AGMON, A. DOUGLIS and L. NIRENBERG, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II, Comm. Pure Appl. Math XVII (1964), 35-92. Zbl0123.28706MR162050
  5. [5] M. BERNADOU, P. G. CIARLET and J. HU, On the convergence of the semi-discrete incremental method in nonlinear, three-dimensional, elasticity, Journal of Elasticity 14 (1984), 425-440. Zbl0551.73019MR770299
  6. [6] D. R. J. CHILLINGWORTH, J. E. MARSDEN and Y. H. WAN, Symmetry and Bifurcation in three-dimensional elasticity, part I, Arch. Rat. Mech. An. 80 pp. 296-322 (1982). Zbl0509.73018MR677564
  7. [7] P. G. CIARLET, Élasticité Tridimensionnelle, Masson, Paris (1986). Zbl0572.73027MR819990
  8. [8] P. G. CIARLET, Topics in Mathematical Elasticity, Vol. 1 : Three-Dimensional Elasticity, North-Holland, Amsterdam (1987). Zbl0648.73014MR936420
  9. [9] M. CROUZEIX and A. MIGNOT, Analyse Numérique des Équations Différentielles, Masson, Paris (1984). Zbl0635.65079MR762089
  10. [10] G. GEYMONAT, Sui problemi ai limiti per i systemi lineari ellitici, Ann. Mat. Pura Appl. LXIX (1965), 207-284. Zbl0152.11102MR196262
  11. [11] M. E. GURTIN, Introduction to Continuum Mechanics, Academic Press, New York (1981). Zbl0559.73001MR636255
  12. [12] S. LANG, Introduction to differential manifolds, John Wiley and Sons, Inc. New York (1962). Zbl0103.15101MR155257
  13. [13] H. LE DRET, Quelques Problèmes d'Existence en Élasticité Non Linéaire, Thesis, Université Pierre et Marie Curie Paris (1982). 
  14. [14] H. LE DRET, Constitutive laws and Existence Questions in Incompressible Nonlinear Elasticity, to appear in Journal of Elasticity (1983). Zbl0648.73013MR817376
  15. [15] P. LE TALLEC and J. T. ODEN, Existence and Characterization of Hydrostatic Pressure in finite deformations of Incompressible Elastic Bodies, Journal of Elasticity, 11, 341-358 (1981). Zbl0483.73035MR637620
  16. [16] P. LE TALLEC, Existence and approximation results for nonlinear mixed problems : application to incompressible finite elasticity, Numer. Math. 38, 365-382 (1982). Zbl0487.76008MR654103
  17. [17] J. E. MARSDEN and T. J. R. HUGHES, Mathematical Foundations of Elasticity, Prentice-Hall, Englewood Cliffs (1983). Zbl0545.73031
  18. [18] J L THOMPSON, Some existence theorems for the traction boundary-value problem of linearized elastostatics, Arch Rat Mech An 32, 369-399 (1969) Zbl0175.22108MR237130
  19. [19] C TRUESDELL and W NOLL, The Nonlinear Field theories of Mechanics, Handbuch der Physik, Vol III/3, 1-602 (1965) Zbl1068.74002MR193816
  20. [20] T VALENT, Sulla differenziabilita dell' operatore di Nemystky, Mend Acc Naz Lincei 65, 15-26 (1978) Zbl0424.35084
  21. [21] Y H WAN, The traction problem for incompressible materials, To appear in Arch Rat Mech An Zbl0574.73013MR797048
  22. [22] C C WANG and C TRUESDELL, Introduction to Rational Elasticity, Noordhoff Groningen (1973) Zbl0308.73001MR468442

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.