Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with Dirichlet controls
M. D. Gunzburger; L. S. Hou; Th. P. Svobodny
- Volume: 25, Issue: 6, page 711-748
- ISSN: 0764-583X
Access Full Article
topHow to cite
topGunzburger, M. D., Hou, L. S., and Svobodny, Th. P.. "Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with Dirichlet controls." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 25.6 (1991): 711-748. <http://eudml.org/doc/193646>.
@article{Gunzburger1991,
author = {Gunzburger, M. D., Hou, L. S., Svobodny, Th. P.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {control of Dirichlet type; optimal control; stationary Navier-Stokes equations; optimal solutions; Lagrange multiplier techniques; finite element approximations; optimal error estimates},
language = {eng},
number = {6},
pages = {711-748},
publisher = {Dunod},
title = {Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with Dirichlet controls},
url = {http://eudml.org/doc/193646},
volume = {25},
year = {1991},
}
TY - JOUR
AU - Gunzburger, M. D.
AU - Hou, L. S.
AU - Svobodny, Th. P.
TI - Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with Dirichlet controls
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1991
PB - Dunod
VL - 25
IS - 6
SP - 711
EP - 748
LA - eng
KW - control of Dirichlet type; optimal control; stationary Navier-Stokes equations; optimal solutions; Lagrange multiplier techniques; finite element approximations; optimal error estimates
UR - http://eudml.org/doc/193646
ER -
References
top- [1] F. ABERGEL and R. TEMAM, On some control problems in fluid mechanics. Theoret. Comput. Fluid Dynamics. To appear. Zbl0708.76106
- [2] R. ADAMS, Sobolev Spaces. Academic, New York, 1975. Zbl0314.46030MR450957
- [3] I. BABUŠKA, The finite element method with Lagrange multipliers. Numer. Math. 16 179-192, 1973. Zbl0258.65108MR359352
- [4] I. BABUŠKA and A. AZIZ, Survey lectures on the mathematical foundations of the finite element method. The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (Ed. by A. Aziz), Academic, New York, 3-359, 1973. Zbl0268.65052MR421106
- [5] F. BREZZI, On the existence, uniqueness, and approximation of saddle-point problems arising from Lagrange multipliers. RAIRO Model. Math. Anal Numér. 8-32, 129-151, 1974. Zbl0338.90047MR365287
- [6] F. BREZZI, A survey of mixed finite element methods. Finite Elements, Theory and Application (Ed. by D. Dwoyer, M. Hussaini and R. Voigt), Springer, New York, 34-49, 1988. Zbl0665.73058MR964479
- [7] F. BREZZI, J. RAPPAZ and P.-A. RAVIART, Finite-dimensional approximation of nonlinear problem. Part I : branches of nonsingular solutions. Numer. Math. 36 1-25, 1980. Zbl0488.65021MR595803
- [8] L. CATTABRIGA, SU un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Sem. Mat. Univ. Padova 31 308-340, 1961. Zbl0116.18002MR138894
- [9] P. CIARLET, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978. Zbl0383.65058MR520174
- [10] M. CROUZEIX, Approximation des problèmes faiblement non linéaires. To appear.
- [11] V. GIRAULT and P.-A. RAVIART, Finite Element Methods for Navier-Stokes Equations. Springer, Berlin, 1986. Zbl0585.65077MR851383
- [12] M. GUNZBURGER, Finite Element Methods for Incompressible Viscous Flows :A Guide to Theory, Practice and Algorithms. Academic, Boston, 1989. MR1017032
- [13] M. GUNZBURGER, L. HOU, Treating inhomogeneous essential boundary conditions in finite element methods. SIAM J. Num. Anal., To appear. Zbl0748.76073MR1154272
- [14] M. GUNZBURGER, L. HOU and T. SVOBODNY, Boundary velocity control of incompressible flow with an application to viscous drag reduction. SIAM J. Opt. Contr., To appear. Zbl0756.49004MR1145711
- [15] M. GUNZBURGER, L. HOU and T. SVOBODNY, Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with distributed and Neumann controls. Math. Comp. 57, 123-151, 1991. Zbl0747.76063MR1079020
- [16] L. Hou, Analysis and finite element approximation of some optimal control problems associated with the Navier-Stokes equations. Ph. D. Thesis, Carnegie Mellon University, Pittsburgh, 1989.
- [17] J. LIONS, Some Aspects of the Optimal Control of Distributed Parameter Systems. SIAM, Philadelphia, 1972. Zbl0275.49001
- [18] M. SCHECTER, Principles of Functional Analysis. Academic, New York, 1971. Zbl0211.14501MR445263
- [19] J. SERRIN, Mathematical principles of classical fluid mechanics. Handbüch der Physik VIII/1 (ed. by S. Flügge and C. Truesdell) Springer, Berlin, 125-263, 1959. MR108116
- [20] R. TEMAM, Navier-Stokes Equations. North-Holland, Amsterdam, 1979. Zbl0426.35003MR603444
- [21] R. TEMAM, Navier-Stokes Equations and Nonlinear Functional Analysis. SIAM, Philadelphia, 1983. Zbl0833.35110MR764933
- [22] R. VERFÜRTH, Finite element approximation of incompressible Navier-Stokes equations with slip boundary condition. Numer. Math. 50 697-621, 1987. Zbl0596.76031MR884296
Citations in EuDML Documents
top- Frederic Abergel, Eduardo Casas, Some optimal control problems of multistate equations appearing in fluid mechanics
- Konstantinos Chrysafinos, Analysis and finite element error estimates for the velocity tracking problem for Stokes flows via a penalized formulation
- Konstantinos Chrysafinos, Analysis and finite element error estimates for the velocity tracking problem for Stokes flows a penalized formulation
- Max D. Gunzburger, Hongchul Kim, Sandro Manservisi, On a shape control problem for the stationary Navier-Stokes equations
- S. S. Ravindran, Dirichlet control of unsteady Navier–Stokes type system related to Soret convection by boundary penalty method
- Max D. Gunzburger, Hongchul Kim, Sandro Manservisi, On a shape control problem for the stationary Navier-Stokes equations
- Konstantinos Chrysafinos, Convergence of discontinuous Galerkin approximations of an optimal control problem associated to semilinear parabolic PDE's
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.