The mortar element method for three dimensional finite elements
- Volume: 31, Issue: 2, page 289-302
- ISSN: 0764-583X
Access Full Article
topHow to cite
topBen Belgacem, F., and Maday, Y.. "The mortar element method for three dimensional finite elements." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 31.2 (1997): 289-302. <http://eudml.org/doc/193838>.
@article{BenBelgacem1997,
author = {Ben Belgacem, F., Maday, Y.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {domain decomposition; mortar element method; second-order elliptic problems; finite element methods},
language = {eng},
number = {2},
pages = {289-302},
publisher = {Dunod},
title = {The mortar element method for three dimensional finite elements},
url = {http://eudml.org/doc/193838},
volume = {31},
year = {1997},
}
TY - JOUR
AU - Ben Belgacem, F.
AU - Maday, Y.
TI - The mortar element method for three dimensional finite elements
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1997
PB - Dunod
VL - 31
IS - 2
SP - 289
EP - 302
LA - eng
KW - domain decomposition; mortar element method; second-order elliptic problems; finite element methods
UR - http://eudml.org/doc/193838
ER -
References
top- [1] Y. ACHDOU and O. PIRONNEAU, 1995, A fast solver for Navier-Stokes equations in the laminar regime using mortar finite element and boundary element methods SIAM J. Num. Anal., vol. 32,pp. 985-1016. Zbl0833.76032MR1342280
- [2] G. ANAGNOUSTOU, 1991, Non conforming sliding spectral element methods for the unsteady incompressible Navier-Stokes equations, PhD Thesis, Massachusetts Institute of Technology, Cambridge, Ma.
- [3] G. ANAGNOUSTOU, Y. MADAY, C. MAVRIPLIS and A. T. PATERA, 1990, On the mortar element method : generalization and implementation, Proceedings of the third International Conference on Domain Decomposition Methods for P. D. E. eds T. F. Chan, R. Glowinski, J. Pénaux and O. B. Widlund, SIAM, Philadelphia, pp. 157-173. Zbl0704.65077MR1064342
- [4] F. BEN BELGACEM, 1993, Discrétisations 3D nonconformes par la méthode de décomposition de domaines des éléments avec joints : Analyse mathématique et mise en oeuvre pour le problème de Poisson, PhD Thesis, Université Pierre et Marie Curie, Paris, France, Note technique EDF, ref. H172/93017.
- [5] F. BEN BELGACEM, 1994, The mortar finite element method with Lagrange multipliers, (Rapport interne MIP, Université Paul Sabatier) (to appear). Zbl0944.65114MR1730018
- [6] F. BEN BELGACEM and Y. MADAY, 1994, Non conforming spectral element methodology tuned to parallel implementation, Comp. Meth. in Applied Mech. Eng, vol. 116, pp. 59-67. Zbl0841.65096MR1286513
- [7] F. BEN BELGACEM and Y. MADAY, 1993, Non-conforming spectral method for second order elliptic problems in 3D, Est-West J. of Num. Math., vol. 1-4, pp. 235-252. Zbl0835.65129MR1318804
- [8] C. BERNARDI, N. DEBIT and Y. MADAY, 1990, Coupling spectral and finite element methods for the Laplace equation, Math. Comput., vol. 54-189, pp. 21-41. Zbl0685.65098MR995205
- [9] C. BERNARDI, Y. MADAY and A. T. PATERA, 1994, A new nonconforming approach to domain decomposition : the mortar element method, Nonlinear Partial Differential Equations and Their Applications, eds H. Brezis and J. L. Lions Pitman, New York, pp. 13-51. Zbl0797.65094MR1268898
- [10] C. BERNARDI, Y. MADAY and A. T. PATERA, 1993, Domain decomposition by the mortar element method, Asymptotic and numerical methods for partial differential equations with critical parameters, eds H. Kaper and M. Garbey, Nato ASI series. Zbl0799.65124MR1222428
- [11] P. E. BJORSTAD and O. B. WIDLUND, 1986, Iterative methods for the solution of elliptic problems in regions partitionned in substructures, SIAM J. Num. Anal., vol. 23, pp. 1097-1120. Zbl0615.65113MR865945
- [12] N. DÉBIT, 1992, La méthode des éléments avec joints dans le cas du couplage des méthodes spectrales et des éléments finis, PhD Thesis, Université Pierre et Marie Curie, Paris, France.
- [13] C. FARHAT and F. X. ROUX, A method of finite element tearing and interconnecting and its parallel solution algorithm, Int. J. Num. Meth. Engr., vol. 32, pp. 1205-1227. Zbl0758.65075
- [14] P. LE TALLEC and T. SASSI, 1995, " Domain Decomposition with Nonmatching Grids : Augmented Lagrangian Approach", Math of Comp., vol. 64, pp. 1367-1396. Zbl0849.65087MR1308457
- [15] P. LE TALLEC and S. RODRIGUES, 1993, Domain decomposition method with nonmatching grids applied to fluid dynamics, Finite element in fluids, new trends and applications, eds K. Morgan, E. Onate, J. Periaux, J. Peraire and O. C. Zienkiewics, Pineridge Press, Barcelone, pp. 418-426. Zbl0874.76040MR1292054
- [16] C. MAVRIPLIS, 1989, Nonconforming discretization and a posteriori error estimations for adaptive spectral element techniques, PhD Thesis, Massachusetts Institute of Technology, Cambridge, Ma.
Citations in EuDML Documents
top- Barbara I. Wohlmuth, A comparison of dual Lagrange multiplier spaces for Mortar finite element discretizations
- Bishnu P. Lamichhane, Barbara I. Wohlmuth, A quasi-dual Lagrange multiplier space for serendipity mortar finite elements in 3D
- Patrick Le Tallec, Saloua Mani Aouadi, Locking free matching of different three dimensional models in structural mechanics
- Bishnu P. Lamichhane, Barbara I. Wohlmuth, A quasi-dual Lagrange multiplier space for serendipity mortar finite elements in 3D
- Barbara I. Wohlmuth, A Comparison of Dual Lagrange Multiplier Spaces for Mortar Finite Element Discretizations
- Andrea Toselli, -finite element approximations on non-matching grids for partial differential equations with non-negative characteristic form
- Annalisa Buffa, Yvon Maday, Francesca Rapetti, A sliding Mesh-Mortar method for a two dimensional Eddy currents model of electric engines
- Andrea Toselli, -finite element approximations on non-matching grids for partial differential equations with non-negative characteristic form
- Annalisa Buffa, Yvon Maday, Francesca Rapetti, A Slideing Mesh-Mortar Method for a two Dimensional Currents Model of Electric Engines
- Eric Boillat, Finite element methods on non-conforming grids by penalizing the matching constraint
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.