# A sliding Mesh-Mortar method for a two dimensional Eddy currents model of electric engines

Annalisa Buffa; Yvon Maday; Francesca Rapetti

- Volume: 35, Issue: 2, page 191-228
- ISSN: 0764-583X

## Access Full Article

top## Abstract

top## How to cite

topBuffa, Annalisa, Maday, Yvon, and Rapetti, Francesca. "A sliding Mesh-Mortar method for a two dimensional Eddy currents model of electric engines." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 35.2 (2001): 191-228. <http://eudml.org/doc/194047>.

@article{Buffa2001,

abstract = {The paper deals with the application of a non-conforming domain decomposition method to the problem of the computation of induced currents in electric engines with moving conductors. The eddy currents model is considered as a quasi-static approximation of Maxwell equations and we study its two-dimensional formulation with either the modified magnetic vector potential or the magnetic field as primary variable. Two discretizations are proposed, the first one based on curved finite elements and the second one based on iso-parametric finite elements in both the static and moving parts. The coupling is obtained by means of the mortar element method (see [7]) and the approximation on the whole domain turns out to be non-conforming. In both cases optimal error estimates are provided. Numerical tests are then proposed in the case of standard first order finite elements to test the reliability and precision of the method. An application of the method to study the influence of the free part movement on the currents distribution is also provided.},

author = {Buffa, Annalisa, Maday, Yvon, Rapetti, Francesca},

journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},

keywords = {Eddy currents problem; non-conforming finite element approximation; domain decomposition methods; eddy currents problem; nonconforming finite element approximation; approximation of Maxwell equations; curved finite elements; mortar element method; error estimates},

language = {eng},

number = {2},

pages = {191-228},

publisher = {EDP-Sciences},

title = {A sliding Mesh-Mortar method for a two dimensional Eddy currents model of electric engines},

url = {http://eudml.org/doc/194047},

volume = {35},

year = {2001},

}

TY - JOUR

AU - Buffa, Annalisa

AU - Maday, Yvon

AU - Rapetti, Francesca

TI - A sliding Mesh-Mortar method for a two dimensional Eddy currents model of electric engines

JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

PY - 2001

PB - EDP-Sciences

VL - 35

IS - 2

SP - 191

EP - 228

AB - The paper deals with the application of a non-conforming domain decomposition method to the problem of the computation of induced currents in electric engines with moving conductors. The eddy currents model is considered as a quasi-static approximation of Maxwell equations and we study its two-dimensional formulation with either the modified magnetic vector potential or the magnetic field as primary variable. Two discretizations are proposed, the first one based on curved finite elements and the second one based on iso-parametric finite elements in both the static and moving parts. The coupling is obtained by means of the mortar element method (see [7]) and the approximation on the whole domain turns out to be non-conforming. In both cases optimal error estimates are provided. Numerical tests are then proposed in the case of standard first order finite elements to test the reliability and precision of the method. An application of the method to study the influence of the free part movement on the currents distribution is also provided.

LA - eng

KW - Eddy currents problem; non-conforming finite element approximation; domain decomposition methods; eddy currents problem; nonconforming finite element approximation; approximation of Maxwell equations; curved finite elements; mortar element method; error estimates

UR - http://eudml.org/doc/194047

ER -

## References

top- [1] R. Adams, Sobolev spaces. Academic Press, London (1976). Zbl0314.46030MR450957
- [2] R. Albanese and G. Rubinacci, Formulation of the eddy–current problem. IEEE proceedings 137 (1990). Zbl0722.65071
- [3] G. Anagnostou, A. Patera and Y. Maday, A sliding mesh for partial differential equations in nonstationary geometries: application to the incompressible Navier-Stockes equations. Tech. rep., Laboratoire d’Analyse Numérique, Université Pierre et Marie Curie (1994).
- [4] F. Ben Belgacem and Y. Maday, Non–conforming spectral element methodology tuned to parallel implementation. Comput. Meth. Appl. Mech. Engrg. 116 (1994) 59–67. Zbl0841.65096
- [5] F. Ben Belgacem, Y. Maday, The mortar element method for three dimensional finite elements. RAIRO-Modél. Math. Anal. Numér. 2 (1997) 289–302. Zbl0868.65082
- [6] C. Bernardi, Optimal finite element interpolation of curved domains. SIAM J. Numer. Anal. 26 (1989) 1212–1240. Zbl0678.65003
- [7] C. Bernardi, Y. Maday and A.T. Patera, A new nonconforming approach to domain decomposition: The mortar elements method, in Nonlinear partial differential equations and their applications, H. Brezis and J. Lions, Eds., Collège de France Seminar, Paris, Vol. XI (1994) 13–51. Zbl0797.65094
- [8] A. Bossavit, Électromagnétisme en vue de la modélisation, Springer-Verlag, Paris (1986). Zbl0787.65090MR1616583
- [9] A. Bossavit, Calcul des courants induits et des forces électromagnétiques dans un système de conducteurs mobiles. RAIRO-Modél. Math. Anal. Numér. 23 (1989) 235-259. Zbl0673.65084MR1001329
- [10] A. Bossavit, Le calcul des courants de Foucault en dimension 3, avec le champ électrique comme inconnue. I: Principes. Rev. Phys. Appl. 25 (1990) 189–197.
- [11] F. Bouillault, Z. Ren and A. Razek, Modélisation tridimensionnelle des courants de Foucault à l’aide de méthodes mixtes avec différentes formulations. Rev. Phys. Appl. 25 (1990) 583–592.
- [12] C.J. Carpenter, Comparison of alternative formulations of 3–dimensional magnetic–field and eddy–current problems at power frequencies. IEEE proceedings 124 (1977) 1026–1034.
- [13] P. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1978). Zbl0383.65058MR520174
- [14] R. Dautray and J.L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques, 2nd edn. Masson, Paris (1987). Zbl0642.35001MR918560
- [15] B. Davat, Z. Ren and M. Lajoie-Mazenc, The movement in field modeling. IEEE, Trans. Magn. 21 (1985) 2296–2298.
- [16] C.R.I. Emson, C.P. Riley, D.A. Walsh, K. Ueda and T. Kumano, Modeling eddy currents induced by rotating systems. IEEE, Trans. Magn. 34 (1998) 2593–2596.
- [17] Y. Goldman, P. Joly and M. Kern, The electric field in the conductive half-space as a model in mining and petroleum prospection. Math. Meth. Appl. Sci. 11 (1989) 373–401. Zbl0693.65088
- [18] J. Jackson, Classical electrodynamics. Wiley, New York (1952). Zbl0997.78500MR436782
- [19] S. Kurz, J. Fetzer, G. Lehenr, and W. Rucker, A novel formulation for 3d eddy current problems with moving bodies using a Lagrangian description and bem–fem coupling. IEEE, Trans. Magn. 34 (1998) 3068–3073.
- [20] R. Leis, Initial Boundary value problems in mathematical physics. John Wiley and Sons (1986). Zbl0599.35001MR841971
- [21] Y. Marechal, G. Meunier, J. Coulomb and H. Magnin, A general purpose for restoring inter-element continuity. IEEE, Trans. Magn. 28 (1992) 1728–1731.
- [22] A. Nicolet, F. Delincé, A. Genon and W. Legros, Finite elements-boundary elements coupling for the movement modeling in two dimensional structures. J. Phys. III 2 (1992) 2035–2044.
- [23] A. Quarteroni and A. Valli, Numerical approximation of partial differential equations. Ser. Comput. Math. 23, Springer-Verlag (1993). Zbl0803.65088MR1299729
- [24] F. Rapetti, L. Santandrea, F. Bouillault and A. Razek, Simulating eddy currents distributions by a finite element method on moving non-matching grids. COMPEL 19 (2000) 10–29. Zbl0965.78013
- [25] A. Razek, J. Coulomb, M. Felliachi and J. Sobonnadière, Conception of an air-gap element for dynamic analysis of the electromagnetic fields in electric machines. IEEE, Trans. Magn. 18 (1982) 655–659.
- [26] D. Rodger, H. Lai and P. Leonard, Coupled elements for problems involving movement. IEEE, Trans. Magn. 26 (1990) 548–550.
- [27] V. Thomeé, Galerkin finite element methods for parabolic problems. Ser. Comput. Math. 25, Springer (1997). Zbl0884.65097MR1479170

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.