Solution of a two-dimensional stationary induction heating problem without boundedness of the coefficients

Stéphane Clain; Rachid Touzani

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1997)

  • Volume: 31, Issue: 7, page 845-870
  • ISSN: 0764-583X

How to cite

top

Clain, Stéphane, and Touzani, Rachid. "Solution of a two-dimensional stationary induction heating problem without boundedness of the coefficients." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 31.7 (1997): 845-870. <http://eudml.org/doc/193858>.

@article{Clain1997,
author = {Clain, Stéphane, Touzani, Rachid},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {existence; truncation technique; unbounded coefficient},
language = {eng},
number = {7},
pages = {845-870},
publisher = {Dunod},
title = {Solution of a two-dimensional stationary induction heating problem without boundedness of the coefficients},
url = {http://eudml.org/doc/193858},
volume = {31},
year = {1997},
}

TY - JOUR
AU - Clain, Stéphane
AU - Touzani, Rachid
TI - Solution of a two-dimensional stationary induction heating problem without boundedness of the coefficients
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1997
PB - Dunod
VL - 31
IS - 7
SP - 845
EP - 870
LA - eng
KW - existence; truncation technique; unbounded coefficient
UR - http://eudml.org/doc/193858
ER -

References

top
  1. [BLP] A. BENSOUSSAN, J. L. LIONS, G. PAPANICOLAOU, 1978, Asymptotic Analysis for Periodic Structures, North Holland. Zbl0404.35001MR503330
  2. [BoGa] L. BOCCARDO, T. GALLOUET, 1989, Nonlinear Elliptic and Parabolic Equa tions Involving Measure Data, Journal of Functional Analysis, 87, No 1. Zbl0707.35060MR1025884
  3. [Bre] H. BREZIS, 1987, Analyse fonctionnelle, Masson, Paris. Zbl0511.46001MR697382
  4. [Cl] S. CLAIN, 1994, Analyse mathématique et numérique d'un modèle de chauffage par induction, PhD Thesis, EPFL, Lausanne. 
  5. [CITo] S. CLAIN, R. TOUZANI, A two-Dimensional Stationary Induction Heating Problem, Math. Meth. Appl. Sci., 1997, 20, 759-766. Zbl0870.35034MR1446209
  6. [CRST] S. CLAIN, J. RAPPAZ, M. SWIERKOSZ, R. TOUZANI, 1993, Numerical Modelling of Induction Heating for Two Dimensional Geometries, Math. Mod. Meth. Appl. Sci. 3, no 6, 905-822. Zbl0801.65120MR1245636
  7. [GaHe] T. GALLOUËT, R. HERBIN, 1994, Existence of a solution to a Coupled Elliptic System 7, No 2, Appl. Math. Lett., 49-55. Zbl0791.35043MR1350145
  8. [GiTr] D. GILBARG, N. TRUDINGER, 1977, Elliptic partial Differential Equations of Second Order, Springer Verlag. Zbl0361.35003MR473443
  9. [Lew] R. LEWANDOWSKI, The Mathematical Analisys of a Coupling of a Turbulent Kinetic Energy Equation to the Bavier-Stokes Equation with an Addy Viscosity, Paper in preparation. Zbl0863.35077
  10. [Mu] F. MURAT, 1994 Private Communication. 
  11. [Si] C. G. SIMADER, 1972On Dirichlet's Boundary Value Problem, vol. 268, Lecture Notes in Mathematics, Springer Verlag. Zbl0242.35027MR473503
  12. [St] G. STAMPACCHIA, 1966, Equations elliptiques du second ordre à coefficients discountinus, Presses Universitaires de Montréal. Zbl0151.15501MR251373
  13. [Ta] G. TALENTI, Best Constants in Sobolev inequality, vol. 110, Ann. Mat. Pura Appl., 1976. Zbl0353.46018MR463908
  14. [Ve] V. VESRPI, Semigroup Theory and Application, Lecture notes in pure and applied mathematics, vol. 116, 1989. 

Citations in EuDML Documents

top
  1. Françoise Brossier, Roger Lewandowski, Impact of the variations of the mixing length in a first order turbulent closure system
  2. Françoise Brossier, Roger Lewandowski, Impact of the variations of the mixing length in a first order turbulent closure system
  3. Bijan Mohammadi, Guillaume Puigt, Mathematical and numerical analysis of an alternative well-posed two-layer turbulence model
  4. Bijan Mohammadi, Guillaume Puigt, Mathematical and Numerical Analysis of an Alternative Well-Posed Two-Layer Turbulence Model
  5. Zakaria Belhachmi, Christine Bernardi, Andreas Karageorghis, Mortar spectral element discretization of the Laplace and Darcy equations with discontinuous coefficients
  6. J. Lederer, R. Lewandowski, A RANS 3D model with unbounded eddy viscosities

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.