Mortar spectral element discretization of the Laplace and Darcy equations with discontinuous coefficients
Zakaria Belhachmi; Christine Bernardi; Andreas Karageorghis
ESAIM: Mathematical Modelling and Numerical Analysis (2007)
- Volume: 41, Issue: 4, page 801-824
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topBelhachmi, Zakaria, Bernardi, Christine, and Karageorghis, Andreas. "Mortar spectral element discretization of the Laplace and Darcy equations with discontinuous coefficients." ESAIM: Mathematical Modelling and Numerical Analysis 41.4 (2007): 801-824. <http://eudml.org/doc/250046>.
@article{Belhachmi2007,
abstract = {
This paper deals with the mortar spectral element discretization of two equivalent problems, the Laplace equation and the
Darcy system, in a domain which corresponds to a nonhomogeneous anisotropic medium. The numerical analysis of the discretization
leads to optimal error estimates and the numerical experiments that we present enable us to verify its efficiency.
},
author = {Belhachmi, Zakaria, Bernardi, Christine, Karageorghis, Andreas},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Mortar method; spectral elements; Laplace equation; Darcy equation.; mortar method; Darcy equation; optimal error estimates; numerical experiments},
language = {eng},
month = {10},
number = {4},
pages = {801-824},
publisher = {EDP Sciences},
title = {Mortar spectral element discretization of the Laplace and Darcy equations with discontinuous coefficients},
url = {http://eudml.org/doc/250046},
volume = {41},
year = {2007},
}
TY - JOUR
AU - Belhachmi, Zakaria
AU - Bernardi, Christine
AU - Karageorghis, Andreas
TI - Mortar spectral element discretization of the Laplace and Darcy equations with discontinuous coefficients
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2007/10//
PB - EDP Sciences
VL - 41
IS - 4
SP - 801
EP - 824
AB -
This paper deals with the mortar spectral element discretization of two equivalent problems, the Laplace equation and the
Darcy system, in a domain which corresponds to a nonhomogeneous anisotropic medium. The numerical analysis of the discretization
leads to optimal error estimates and the numerical experiments that we present enable us to verify its efficiency.
LA - eng
KW - Mortar method; spectral elements; Laplace equation; Darcy equation.; mortar method; Darcy equation; optimal error estimates; numerical experiments
UR - http://eudml.org/doc/250046
ER -
References
top- Y. Achdou and C. Bernardi, Un schéma de volumes ou éléments finis adaptatif pour les équations de Darcy à perméabilité variable. C.R. Acad. Sci. Paris Série I333 (2001) 693–698.
- Y. Achdou, C. Bernardi and F. Coquel, A priori and a posteriori analysis of finite volume discretizations of Darcy's equations. Numer. Math.96 (2003) 17–42.
- F. Ben Belgacem, The Mortar finite element method with Lagrangian multiplier. Numer. Math.84 (1999) 173–197.
- C. Bernardi and N. Chorfi, Mortar spectral element methods for elliptic equations with discontinuous coefficients. Math. Models Methods Appl. Sci.12 (2002) 497–524.
- C. Bernardi and Y. Maday, Spectral Methods, in the Handbook of Numerical AnalysisV, P.G. Ciarlet and J.-L. Lions Eds., North-Holland (1997) 209–485.
- C. Bernardi and Y. Maday, Spectral element discretizations of the Poisson equation with mixed boundary conditions. Appl. Math. Inform.6 (2001) 1–29.
- C. Bernardi and R. Verfürth, Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math.85 (2000) 579–608.
- C. Bernardi, M. Dauge and Y. Maday, Relèvements de traces préservant les polynômes. C.R. Acad. Sci. Paris Série I315 (1992) 333–338.
- C. Bernardi, Y. Maday and A.T. Patera, A new nonconforming approach to domain decomposition: the mortar element method, in Collège de France Seminar XI, H. Brezis and J.-L. Lions Eds., Pitman (1994) 13–51.
- C. Bernardi, Y. Maday and F. Rapetti, Discrétisations variationnelles de problèmes aux limites elliptiques, Mathématiques et Applications45. Springer-Verlag (2004).
- C. Bernardi, Y. Maday and F. Rapetti, Basics and some applications of the mortar element method. GAMM – Gesellschaft für Angewandte Mathematik und Mechanik28 (2005) 97–123.
- S. Bertoluzza and V. Perrier, The mortar method in the wavelet context. ESAIM: M2AN35 (2001) 647–673.
- S. Clain and R. Touzani, Solution of a two-dimensional stationary induction heating problem without boundedness of the coefficients. RAIRO Modél. Math. Anal. Numér.31 (1997) 845–870.
- V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations, Theory and Algorithms . Springer-Verlag (1986).
- Y. Maday and E.M. Rønquist, Optimal error analysis of spectral methods with emphasis on non-constant coefficients and deformed geometries. Comput. Methods Appl. Mech. Engrg.80 (1990) 91–115.
- N.G. Meyers, An Lp-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Sc. Norm. Sup. Pisa17 (1963) 189–206.
- NAG Library Mark 21, The Numerical Algorithms Group Ltd, Oxford (2004).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.