Quasimonotone systems of higher order

Manfred Kronz

Bollettino dell'Unione Matematica Italiana (2003)

  • Volume: 6-B, Issue: 2, page 459-480
  • ISSN: 0392-4041

Abstract

top
We consider higher order quasimonotone nonlinear systems of divergence type with growth of order p , p 2 , and Dini continuous coefficients. Using the technique of harmonic approximation we give a direct partial regularity proof for weak solutions.

How to cite

top

Kronz, Manfred. "Quasimonotone systems of higher order." Bollettino dell'Unione Matematica Italiana 6-B.2 (2003): 459-480. <http://eudml.org/doc/194638>.

@article{Kronz2003,
abstract = {We consider higher order quasimonotone nonlinear systems of divergence type with growth of order $p$, $p\geq 2$, and Dini continuous coefficients. Using the technique of harmonic approximation we give a direct partial regularity proof for weak solutions.},
author = {Kronz, Manfred},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {459-480},
publisher = {Unione Matematica Italiana},
title = {Quasimonotone systems of higher order},
url = {http://eudml.org/doc/194638},
volume = {6-B},
year = {2003},
}

TY - JOUR
AU - Kronz, Manfred
TI - Quasimonotone systems of higher order
JO - Bollettino dell'Unione Matematica Italiana
DA - 2003/6//
PB - Unione Matematica Italiana
VL - 6-B
IS - 2
SP - 459
EP - 480
AB - We consider higher order quasimonotone nonlinear systems of divergence type with growth of order $p$, $p\geq 2$, and Dini continuous coefficients. Using the technique of harmonic approximation we give a direct partial regularity proof for weak solutions.
LA - eng
UR - http://eudml.org/doc/194638
ER -

References

top
  1. CAMPANATO, S., Proprietà di una famiglia di spazi funzionali, Ann. Scuola Norm. Sup. Pisa 18 (1964), 137-160. Zbl0133.06801MR167862
  2. CAMPANATO, S., Teoremi di interpolazione per tranformazioni che applicano L p in C h , α , Ann. Scuola Norm. Sup. Pisa, 18 (1964), 345-360. Zbl0135.35102MR170202
  3. CAMPANATO, S., Equazioni ellitichi del IIe ordine e spazi L 2 , λ , Ann. Mat. Pura Appl., 69 (1965), 321-381. Zbl0145.36603MR192168
  4. CAMPANATO, S., Alcune osservazioni relative alle soluzioni di equazioni ellittiche di ordine 2 m , Atti Convegno Equaz. Der. Parz., Bologna, 1967, 17-25. MR264207
  5. DUZAAR, F.- STEFFEN, K., Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals, Preprint. Zbl0999.49024MR1900994
  6. DUZAAR, F.- GASTEL, A.- GROTOWSKI, J., Optimal partial regularity for nonlinear elliptic systems of higher order, Preprint. Zbl0995.35017MR1855456
  7. EVANS, L. C., Quasiconvexitity and Partial Regularity in the Calculus of Variations, Arch. Rat. Mech. Anal., 95 (1986), 227-252. Zbl0627.49006MR853966
  8. FUCHS, M., Regularity theorems for nonlinear systems of partial differential equations under natural ellipticity conditions, Analysis7 (1987), 83-93. Zbl0624.35032MR885719
  9. GIAQUINTA, M., Introduction to Regularity Theory for Nonlinear Elliptic Systems, Basel-Boston-Berlin, Birkhäuser, 1993. Zbl0786.35001MR1239172
  10. GUIDORZI, M., A Remark on Partial Regularity of Minimizers of Quasiconvex Integrals of Higher Order, Rend. Istit. Mat. Univ. Trieste, 32 (2000), 1-24. Zbl1006.49028MR1828559
  11. GIAQUINTA, M.- MODICA, G., Almost-everywhere regularity results for solutions of nonlinear elliptic systems, Manuscripta Math., 28 (1979), 109-158. Zbl0411.35018MR535699
  12. GIAQUINTA, M.- MODICA, G., Partial regularity of minimizers of quasiconvex integrals, Ann. Inst. Henri Poincaré, Analyse non linéaire, 3 (1986), 185-208. Zbl0594.49004MR847306
  13. HAMBURGER, C., Quasimonotonicity, regularity and duality for nonlinear systems of partial differential equations, Ann. Mat. Pura Appl., IV. Ser., 169 (1995), 321-354. Zbl0852.35031MR1378480
  14. KRONZ, M., Partial Regularity Results for Quasiconvex Functionals of Higher Order, Ann. Inst. Henri Poincaré, Analyse non linéaire, 19 (2002), 81-112. Zbl1010.49023MR1902546
  15. MEYERS, N. G., Quasi-Convexity and Lower Semi-Continuity of Multiple Variational Integrals of Any Order, Trans. Am. Math. Soc., 119 (1965), 125-149. Zbl0166.38501MR188838
  16. SIMON, L., Theorems on Regularity and Singularity of Energy Minimizing Maps, Basel-Boston-Berlin, Birkhäuser, 1996. Zbl0864.58015MR1399562
  17. ZHANG, KE-WEI, On the Dirichlet problem for a class of quasilinear elliptic systems of partial differential equations in divergence form, Partial differential equations, Proc. Symp., Tianjin/China, 1986, Lect. Notes Math., 1306 (1988), 262-277. Zbl0672.35026MR1032785

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.