Existence for an Unsteady Fluid-Structure Interaction Problem
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 34, Issue: 3, page 609-636
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topGrandmont, Céline, and Maday, Yvon. "Existence for an Unsteady Fluid-Structure Interaction Problem." ESAIM: Mathematical Modelling and Numerical Analysis 34.3 (2010): 609-636. <http://eudml.org/doc/197391>.
@article{Grandmont2010,
abstract = {
We study the well-posedness of an unsteady fluid-structure interaction problem.
We consider a viscous incompressible flow, which is modelled by the
Navier-Stokes equations. The structure is a collection of rigid moving bodies. The fluid
domain depends on time and is defined by the position of the structure, itself resulting
from a stress distribution coming from the fluid. The problem is then
nonlinear and the equations we deal with are coupled. We prove its local
solvability in time through two fixed point procedures.
},
author = {Grandmont, Céline, Maday, Yvon},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Navier-Stokes; fluid structure interaction.; time-dependent domain; coupled equations; fluid-structure interaction; rigid bodies; incompressible Navier-Stokes equations; local solvability in time; Banach fixed point theorem; contraction mapping principle},
language = {eng},
month = {3},
number = {3},
pages = {609-636},
publisher = {EDP Sciences},
title = {Existence for an Unsteady Fluid-Structure Interaction Problem},
url = {http://eudml.org/doc/197391},
volume = {34},
year = {2010},
}
TY - JOUR
AU - Grandmont, Céline
AU - Maday, Yvon
TI - Existence for an Unsteady Fluid-Structure Interaction Problem
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 34
IS - 3
SP - 609
EP - 636
AB -
We study the well-posedness of an unsteady fluid-structure interaction problem.
We consider a viscous incompressible flow, which is modelled by the
Navier-Stokes equations. The structure is a collection of rigid moving bodies. The fluid
domain depends on time and is defined by the position of the structure, itself resulting
from a stress distribution coming from the fluid. The problem is then
nonlinear and the equations we deal with are coupled. We prove its local
solvability in time through two fixed point procedures.
LA - eng
KW - Navier-Stokes; fluid structure interaction.; time-dependent domain; coupled equations; fluid-structure interaction; rigid bodies; incompressible Navier-Stokes equations; local solvability in time; Banach fixed point theorem; contraction mapping principle
UR - http://eudml.org/doc/197391
ER -
References
top- R.A. Adams, Sobolev spaces. Academic Press, New York NY, San Francisco CA, London (1975).
- G. Allain, Un problème de Navier-Stokes avec surface libre. Thèse de troisième cycle de l'Université Paris VI, France (1983).
- G. Allain, Small-time existence for the Navier-Stokes equations with a free surface. Appl. Math. Optim., 16 (1987) 37-50.
- J.T. Beale, The Initial Value Problem for the Navier-Stokes Equation with a Free Surface. Comm. Pure Appl. Math., XXXIV (1981) 359-392.
- H. Brezis, Analyse fonctionnelle: Théorie et applications. Masson, Paris (1983).
- C. Conca, J. San Martin and M. Tucsnak, Motion of a rigid body in viscous fluid. C. R. Acad. Sci. Paris Série I32 (1999) 473-478.
- B. Desjardins and M.J. Esteban, Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Ration. Mech. Anal.146 (1999) 59-71.
- B. Desjardins and M.J. Esteban, On weak solutions for fluid-rigid structure interaction: compressible and incompressible models. Comm. Partial Differ. Eq. (to appear).
- G. Duvaut, Mécanique des milieux continus. Masson, Paris, Milan, Barcelone, Mexico (1990).
- V. Girault and P.A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin Heidelberg (1986).
- R. Glowinski and B. Maury, Fluid-particule flow: a symmetric formulation. C. R. Acad. Sci. Paris Sér. I Math. t. 324, (1997) 1079-1084.
- C. Grandmont and Y. Maday, Existence de solutions d'un problème de couplage fluide-structure bidimensionnel instationnaire. C. R. Acad. Sci. Paris Sér. I Math. t. 326, (1998) 525-530.
- J. Heywood and R. Rannacher, Finite-element approximation of the nonstationnary Navier-Stokes problem. Part III. Smoothing property and higher order error estimates for spatial discretisation. SIAM J. Numer. Anal. 25 (1988) 489-512.
- J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. T. I et II, Dunod, Paris (1968).
- D. Serre, Chute libre d'un solide dans un fluide visqueux incompressible : Existence. Japan J. Appl. Math.4 (1987) 33-73.
- V.A. Solonnikov, Solvability of a Problem on the Motion of a Viscous Incompressible Fluid Bounded by a Free Surface. Math. USSR Izvestiya4-1 (1977) 1388-1424.
- V.A. Solonnikov, On the Transiant Motion of an Isolated Volume of Viscous Incompressible Fluid. Math. USSR Izvestiya 31 (1988) 381-405.
- V.A. Solonnikov, Unsteady motion of a finite mass of fluid, bounded by a free surface. J. Soviet Math.40 (1988) 672-686.
- R. Temam, Navier-Stokes Equations. North-Holland Publishing Company (1977).
Citations in EuDML Documents
top- M. Boulakia, S. Guerrero, A regularity result for a solid-fluid system associated to the compressible Navier-Stokes equations
- Patricio Cumsille, Takéo Takahashi, Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid
- Cornel Marius Murea, Numerical simulation of a pulsatile flow through a flexible channel
- Cornel Marius Murea, Numerical simulation of a pulsatile flow through a flexible channel
- Jaime H. Ortega, Lionel Rosier, Takéo Takahashi, Classical solutions for the equations modelling the motion of a ball in a bidimensional incompressible perfect fluid
- Jaime H. Ortega, Lionel Rosier, Takéo Takahashi, Classical solutions for the equations modelling the motion of a ball in a bidimensional incompressible perfect fluid
- Jaime Ortega, Lionel Rosier, Takéo Takahashi, On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.