Seiberg-Witten Theory

Jürgen Eichhorn; Thomas Friedrich

Banach Center Publications (1997)

  • Volume: 39, Issue: 1, page 231-267
  • ISSN: 0137-6934

Abstract

top
We give an introduction into and exposition of Seiberg-Witten theory.

How to cite

top

Eichhorn, Jürgen, and Friedrich, Thomas. "Seiberg-Witten Theory." Banach Center Publications 39.1 (1997): 231-267. <http://eudml.org/doc/208666>.

@article{Eichhorn1997,
abstract = {We give an introduction into and exposition of Seiberg-Witten theory.},
author = {Eichhorn, Jürgen, Friedrich, Thomas},
journal = {Banach Center Publications},
keywords = {Seiberg-Witten equations; structures; Thom conjecture},
language = {eng},
number = {1},
pages = {231-267},
title = {Seiberg-Witten Theory},
url = {http://eudml.org/doc/208666},
volume = {39},
year = {1997},
}

TY - JOUR
AU - Eichhorn, Jürgen
AU - Friedrich, Thomas
TI - Seiberg-Witten Theory
JO - Banach Center Publications
PY - 1997
VL - 39
IS - 1
SP - 231
EP - 267
AB - We give an introduction into and exposition of Seiberg-Witten theory.
LA - eng
KW - Seiberg-Witten equations; structures; Thom conjecture
UR - http://eudml.org/doc/208666
ER -

References

top
  1. [1] D. Auckley, Surgery, knots and the Seiberg-Witten equations, Preprint, Berkeley 1995. 
  2. [2] J. Eichhorn, Gauge theory on open manifolds of bounded geometry, Internat. J. Modern Phys. A 7 (1992), 3927-3977. 
  3. [3] J. Eichhorn, The manifold structure of maps between open manifolds, Ann. Global Anal. Geom. 11 (1993), 253-300. Zbl0840.58014
  4. [4] J. Eichhorn, Spaces of Riemannian metrics on open manifolds, Results Math. 27 (1995), 256-283. 
  5. [5] J. Eichhorn and G. Heber, The configuration space of gauge theory on open manifolds, to appear. Zbl0890.58002
  6. [6] D. Freed and K. Uhlenbeck, Instantons and four manifolds, Springer, New York 1984. 
  7. [7] F. Hirzebruch and H. Hopf, Felder von Flächenelementen in 4-dimensionalen Mannigfaltigkeiten, Math. Ann. 136 (1958), 156-172. Zbl0088.39403
  8. [8] N. Hitchin, Harmonic spinors, Adv. Math. 14 (1974), 1-55. Zbl0284.58016
  9. [9] A. Jaffe and C. Taubes, Vortices and Monopoles, Birkhäuser, Boston 1980. 
  10. [10] J. Jost, X. Peng and G. Wang, Variational aspects of the Seiberg-Witten functional, Preprint, Bochum 1995. Zbl0852.58020
  11. [11] D. Kotschick, J. Morgan and C. Taubes, Four manifolds without symplectic structures but with nontrivial Seiberg-Witten invariant, Math. Res. Lett. 2 (1995), 119-124. Zbl0853.57020
  12. [12] P. Kronheimer and T. Mrowka, The genus of embedded surfaces in the projective plane, Math. Res. Lett. 1 (1994), 797-808. Zbl0851.57023
  13. [13] J. Labastida and M. Marino, Non-abelian monopoles on four-manifolds, Preprint, Santiago de Compostela, 1995. Zbl1009.58501
  14. [14] B. Lawson and M. Michelson, Spin Geometry, Princeton University Press, Princeton 1989. 
  15. [15] C. LeBrun, Einstein metrics and Mostow rigidity, Math. Res. Lett. 2 (1995), 1-8. Zbl0974.53035
  16. [16] S. Rosenberg, Harmonic forms and L 2 -cohomology on manifolds with cylinders, Indiana Univ. Math. J. 34 (1985), 355-373. Zbl0556.57022
  17. [17] C. Taubes, The Seiberg-Witten invariants and symplectic forms, Math. Res. Lett. 1 (1994), 809-822. Zbl0853.57019
  18. [18] C. Taubes, More constraints on symplectic manifolds from the Seiberg-Witten invariants, Math. Res. Lett. 2 (1995), 9-14. Zbl0854.57019
  19. [19] C. Taubes, The Seiberg-Witten and the Gromov invariants, Math. Res. Lett. 2 (1995), 221-238. Zbl0854.57020
  20. [20] C. Taubes, From the Seiberg-Witten equations to pseudo-holomorphic curves, Preprint, Harvard 1995. 
  21. [21] C. Taubes, Self-dual connections on non self-dual 4-manifolds, J. Differential Geom. 17 (1982), 139-170. Zbl0484.53026
  22. [22] R. Zhang, B. Wang and A. Carey, Topological quantum field theory and Seiberg-Witten monopoles, Preprint, Adelaide 1995. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.