Pointwise multipliers for functions of weighted bounded mean oscillation

Eiichi Nakai

Studia Mathematica (1993)

  • Volume: 105, Issue: 2, page 105-119
  • ISSN: 0039-3223

How to cite

top

Nakai, Eiichi. "Pointwise multipliers for functions of weighted bounded mean oscillation." Studia Mathematica 105.2 (1993): 105-119. <http://eudml.org/doc/215987>.

@article{Nakai1993,
abstract = {},
author = {Nakai, Eiichi},
journal = {Studia Mathematica},
keywords = {pointwise multipliers; functions of weighted bounded mean oscillation},
language = {eng},
number = {2},
pages = {105-119},
title = {Pointwise multipliers for functions of weighted bounded mean oscillation},
url = {http://eudml.org/doc/215987},
volume = {105},
year = {1993},
}

TY - JOUR
AU - Nakai, Eiichi
TI - Pointwise multipliers for functions of weighted bounded mean oscillation
JO - Studia Mathematica
PY - 1993
VL - 105
IS - 2
SP - 105
EP - 119
AB -
LA - eng
KW - pointwise multipliers; functions of weighted bounded mean oscillation
UR - http://eudml.org/doc/215987
ER -

References

top
  1. [1] S. Bloom, Pointwise multipliers of weighted BMO spaces, Proc. Amer. Math. Soc. 105 (1989), 950-960. Zbl0706.42015
  2. [2] S. Campanato, Thoremi di interpolazione per transformazioni che applicano in , Ann. Scuola Norm. Sup. Pisa 19 (1964), 345-360. 
  3. [3] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, 1985. 
  4. [4] S. Janson, On functions with conditions on the mean oscillation, Ark. Mat. 14 (1976), 189-196. Zbl0341.43005
  5. [5] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426. Zbl0102.04302
  6. [6] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. Zbl0236.26016
  7. [7] B. Muckenhoupt, The equivalence of two conditions for weight functions, Studia Math. 49 (1974), 101-106. Zbl0243.44003
  8. [8] E. Nakai and K. Yabuta, Pointwise multipliers for functions of bounded mean oscillation, J. Math. Soc. Japan 37 (1985), 207-218. Zbl0546.42019
  9. [9] S. Spanne, Some function spaces defined using the mean oscillation over cubes, Ann. Scuola Norm. Sup. Pisa 19 (1965), 593-608. Zbl0199.44303
  10. [10] G. Stampacchia, -spaces and interpolation, Comm. Pure Appl. Math. 17 (1964), 293-306. 

NotesEmbed ?

top

You must be logged in to post comments.