Pointwise multipliers for functions of weighted bounded mean oscillation

Eiichi Nakai

Studia Mathematica (1993)

  • Volume: 105, Issue: 2, page 105-119
  • ISSN: 0039-3223

How to cite

top

Nakai, Eiichi. "Pointwise multipliers for functions of weighted bounded mean oscillation." Studia Mathematica 105.2 (1993): 105-119. <http://eudml.org/doc/215987>.

@article{Nakai1993,
abstract = {},
author = {Nakai, Eiichi},
journal = {Studia Mathematica},
keywords = {pointwise multipliers; functions of weighted bounded mean oscillation},
language = {eng},
number = {2},
pages = {105-119},
title = {Pointwise multipliers for functions of weighted bounded mean oscillation},
url = {http://eudml.org/doc/215987},
volume = {105},
year = {1993},
}

TY - JOUR
AU - Nakai, Eiichi
TI - Pointwise multipliers for functions of weighted bounded mean oscillation
JO - Studia Mathematica
PY - 1993
VL - 105
IS - 2
SP - 105
EP - 119
AB -
LA - eng
KW - pointwise multipliers; functions of weighted bounded mean oscillation
UR - http://eudml.org/doc/215987
ER -

References

top
  1. [1] S. Bloom, Pointwise multipliers of weighted BMO spaces, Proc. Amer. Math. Soc. 105 (1989), 950-960. Zbl0706.42015
  2. [2] S. Campanato, Thoremi di interpolazione per transformazioni che applicano L p in C h , α , Ann. Scuola Norm. Sup. Pisa 19 (1964), 345-360. 
  3. [3] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, 1985. 
  4. [4] S. Janson, On functions with conditions on the mean oscillation, Ark. Mat. 14 (1976), 189-196. Zbl0341.43005
  5. [5] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426. Zbl0102.04302
  6. [6] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. Zbl0236.26016
  7. [7] B. Muckenhoupt, The equivalence of two conditions for weight functions, Studia Math. 49 (1974), 101-106. Zbl0243.44003
  8. [8] E. Nakai and K. Yabuta, Pointwise multipliers for functions of bounded mean oscillation, J. Math. Soc. Japan 37 (1985), 207-218. Zbl0546.42019
  9. [9] S. Spanne, Some function spaces defined using the mean oscillation over cubes, Ann. Scuola Norm. Sup. Pisa 19 (1965), 593-608. Zbl0199.44303
  10. [10] G. Stampacchia, ( p , λ ) -spaces and interpolation, Comm. Pure Appl. Math. 17 (1964), 293-306. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.