Hardy spaces associated with some Schrödinger operators

Jacek Dziubański; Jacek Zienkiewicz

Studia Mathematica (1997)

  • Volume: 126, Issue: 2, page 149-160
  • ISSN: 0039-3223

Abstract

top
For a Schrödinger operator A = -Δ + V, where V is a nonnegative polynomial, we define a Hardy H A 1 space associated with A. An atomic characterization of H A 1 is shown.

How to cite

top

Dziubański, Jacek, and Zienkiewicz, Jacek. "Hardy spaces associated with some Schrödinger operators." Studia Mathematica 126.2 (1997): 149-160. <http://eudml.org/doc/216448>.

@article{Dziubański1997,
abstract = {For a Schrödinger operator A = -Δ + V, where V is a nonnegative polynomial, we define a Hardy $H_A^1$ space associated with A. An atomic characterization of $H_A^1$ is shown.},
author = {Dziubański, Jacek, Zienkiewicz, Jacek},
journal = {Studia Mathematica},
keywords = {Hardy spaces; Schrödinger operator; atomic decomposition},
language = {eng},
number = {2},
pages = {149-160},
title = {Hardy spaces associated with some Schrödinger operators},
url = {http://eudml.org/doc/216448},
volume = {126},
year = {1997},
}

TY - JOUR
AU - Dziubański, Jacek
AU - Zienkiewicz, Jacek
TI - Hardy spaces associated with some Schrödinger operators
JO - Studia Mathematica
PY - 1997
VL - 126
IS - 2
SP - 149
EP - 160
AB - For a Schrödinger operator A = -Δ + V, where V is a nonnegative polynomial, we define a Hardy $H_A^1$ space associated with A. An atomic characterization of $H_A^1$ is shown.
LA - eng
KW - Hardy spaces; Schrödinger operator; atomic decomposition
UR - http://eudml.org/doc/216448
ER -

References

top
  1. [D] J. Dziubański, A note on Schrödinger operators with polynomial potentials, preprint. Zbl0919.43005
  2. [DHJ] J. Dziubański, A. Hulanicki, and J. W. Jenkins, A nilpotent Lie algebra and eigenvalue estimates, Colloq. Math. 68 (1995), 7-16. Zbl0837.43012
  3. [Fe] C. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. 9 (1983), 129-206. Zbl0526.35080
  4. [FeS] C. Fefferman and E. Stein, H p spaces of several variables, Acta Math. 129 (1972), 137-193. Zbl0257.46078
  5. [FS] G. Folland and E. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, Princeton, 1982. Zbl0508.42025
  6. [G] P. Głowacki, Stable semi-groups of measures as commutative approximate identities on nongraded homogeneous groups, Invent. Math. 83 (1986), 557-582. Zbl0595.43006
  7. [Go] D. Goldberg, A local version of real Hardy spaces, Duke Math. J. 46 (1979), 27-42. 
  8. [He] W. Hebisch, On operators satisfying Rockland condition, preprint, Univ. of Wrocław. 
  9. [HN] B. Helffer et J. Nourrigat, Une inégalité L 2 , preprint. 
  10. [S1] E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Princeton Univ. Press, Princeton, 1970. Zbl0193.10502
  11. [S2] E. M. Stein, Harmonic Analysis, Princeton Univ. Press, Princeton, 1993. 
  12. [Z] J. Zhong, Harmonic analysis for some Schrödinger type operators, Ph.D. thesis, Princeton Univ., 1993. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.