Quasiconformal mappings and Sobolev spaces
Studia Mathematica (1998)
- Volume: 131, Issue: 1, page 1-17
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topKoskela, Pekka, and MacManus, Paul. "Quasiconformal mappings and Sobolev spaces." Studia Mathematica 131.1 (1998): 1-17. <http://eudml.org/doc/216562>.
@article{Koskela1998,
abstract = {We examine how Poincaré change under quasiconformal maps between appropriate metric spaces having the same Hausdorff dimension. We also show that for many metric spaces the Sobolev functions can be identified with functions satisfying Poincaré, and this allows us to extend to the metric space setting the fact that quasiconformal maps from $ℝ^Q$ onto $ℝ^Q$ preserve the Sobolev space $L^\{1,Q\}(ℝ^Q)$.},
author = {Koskela, Pekka, MacManus, Paul},
journal = {Studia Mathematica},
keywords = {quasiconformal mappings in metric spaces},
language = {eng},
number = {1},
pages = {1-17},
title = {Quasiconformal mappings and Sobolev spaces},
url = {http://eudml.org/doc/216562},
volume = {131},
year = {1998},
}
TY - JOUR
AU - Koskela, Pekka
AU - MacManus, Paul
TI - Quasiconformal mappings and Sobolev spaces
JO - Studia Mathematica
PY - 1998
VL - 131
IS - 1
SP - 1
EP - 17
AB - We examine how Poincaré change under quasiconformal maps between appropriate metric spaces having the same Hausdorff dimension. We also show that for many metric spaces the Sobolev functions can be identified with functions satisfying Poincaré, and this allows us to extend to the metric space setting the fact that quasiconformal maps from $ℝ^Q$ onto $ℝ^Q$ preserve the Sobolev space $L^{1,Q}(ℝ^Q)$.
LA - eng
KW - quasiconformal mappings in metric spaces
UR - http://eudml.org/doc/216562
ER -
References
top- [GR] V. M. Gol'dshteĭn and Yu. G. Reshetnyak, Quasiconformal Mappings and Sobolev Spaces, Kluwer, Dordrecht, 1990.
- [Ha] P. Hajłasz, Sobolev spaces on an arbitrary metric space, Potential Anal. 5 (1996), 403-415. Zbl0859.46022
- [HaK1] P. Hajłasz and P. Koskela, Sobolev meets Poincaré, C. R. Acad. Sci. Paris 320 (1995), 1211-1215. Zbl0837.46024
- [HaK2] P. Hajłasz and P. Koskela, Sobolev met Poincaré, preprint. Zbl0954.46022
- [HKM] J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Univ. Press, Oxford, 1993.
- [HeK1] J. Heinonen and P. Koskela, From local to global in quasiconformal structures, Proc. Nat. Acad. Sci. U.S.A. 93 (1996), 554-556. Zbl0842.30016
- [HeK2] J. Heinonen and P. Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math., to appear. Zbl0915.30018
- [KS] J. N. Korevaar and R. M. Schoen, Sobolev spaces and harmonic maps for metric space targets, Comm. Anal. Geom. 1 (1993), 561-659. Zbl0862.58004
- [K1] P. Koskela, Removable sets for Sobolev spaces, Ark. Mat., to appear. Zbl1070.46502
- [K2] P. Koskela, The degree of regularity of a quasiconformal mapping, Proc. Amer. Math. Soc. 122 (1994), 769-772. Zbl0814.30015
- [L] L. Lewis, Quasiconformal mapping and Royden algebras in space, Trans. Amer. Math. Soc. 158 (1971), 481-496. Zbl0214.38302
- [S] S. Semmes, Finding curves on general spaces through quantitative topology with applications for Sobolev and Poincaré inequalities, Selecta Math. (N.S.) 2 (1996), 155-295. Zbl0870.54031
- [ST] J. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math. 1381, Springer, Berlin, 1989. Zbl0676.42021
- [T] J. Tyson, Quasiconformality and quasisymmetry in metric measure spaces, Ann. Acad. Sci. Fenn. Math., to appear. Zbl0910.30022
- [TV] P. Tukia and J. Väisälä, Quasisymmetric embeddings of metric spaces, ibid. 5 (1980), 97-114. Zbl0403.54005
- [Z] W. P. Ziemer, Change of variables for absolutely continuous functions, Duke Math. J. 36 (1969), 171-178. Zbl0177.08006
Citations in EuDML Documents
top- Luigi Ambrosio, Nicola Gigli, Giuseppe Savarè, Heat Flow and Calculus on Metric Measure Spaces with Ricci Curvature Bounded Below - the Compact Case
- Bruno Franchi, Piotr Hajłasz, Pekka Koskela, Definitions of Sobolev classes on metric spaces
- Kari Astala, Mario Bonk, Juha Heinonen, Quasiconformal mappings with Sobolev boundary values
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.