Extension maps in ultradifferentiable and ultraholomorphic function spaces
Studia Mathematica (2000)
- Volume: 143, Issue: 3, page 221-250
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topSchmets, Jean, and Valdivia, Manuel. "Extension maps in ultradifferentiable and ultraholomorphic function spaces." Studia Mathematica 143.3 (2000): 221-250. <http://eudml.org/doc/216817>.
@article{Schmets2000,
abstract = {The problem of the existence of extension maps from 0 to ℝ in the setting of the classical ultradifferentiable function spaces has been solved by Petzsche [9] by proving a generalization of the Borel and Mityagin theorems for $C^\{∞\}$-spaces. We get a Ritt type improvement, i.e. from 0 to sectors of the Riemann surface of the function log for spaces of ultraholomorphic functions, by first establishing a generalization to some nonclassical ultradifferentiable function spaces.},
author = {Schmets, Jean, Valdivia, Manuel},
journal = {Studia Mathematica},
keywords = {extension map; ultradifferentiable function; Roumieu type; Beurling type; Borel theorem; ultraholomorphic functions; (LB)-space; surjectivity of the restriction map; ultradifferentiable function spaces of Beurling and Roumieu types; Fréchet space},
language = {eng},
number = {3},
pages = {221-250},
title = {Extension maps in ultradifferentiable and ultraholomorphic function spaces},
url = {http://eudml.org/doc/216817},
volume = {143},
year = {2000},
}
TY - JOUR
AU - Schmets, Jean
AU - Valdivia, Manuel
TI - Extension maps in ultradifferentiable and ultraholomorphic function spaces
JO - Studia Mathematica
PY - 2000
VL - 143
IS - 3
SP - 221
EP - 250
AB - The problem of the existence of extension maps from 0 to ℝ in the setting of the classical ultradifferentiable function spaces has been solved by Petzsche [9] by proving a generalization of the Borel and Mityagin theorems for $C^{∞}$-spaces. We get a Ritt type improvement, i.e. from 0 to sectors of the Riemann surface of the function log for spaces of ultraholomorphic functions, by first establishing a generalization to some nonclassical ultradifferentiable function spaces.
LA - eng
KW - extension map; ultradifferentiable function; Roumieu type; Beurling type; Borel theorem; ultraholomorphic functions; (LB)-space; surjectivity of the restriction map; ultradifferentiable function spaces of Beurling and Roumieu types; Fréchet space
UR - http://eudml.org/doc/216817
ER -
References
top- [1] E. Borel, Sur quelques points de la théorie des fonctions, Ann. Sci. Ecole Norm. Sup. 12 (1895), 9-55. Zbl26.0429.03
- [2] J. C. Canille, Desenvolvimento asintotico e introduç ao as cálculo diferential resurgente, 17 Colóquio Brasileiro de Matemática, IMPA, 1989.
- [3] H. Cartan, Sur les classes de fonctions définies par des inégalités portant sur leurs dérivées successives, Actualités Sci. Indust. 867, Publ. Inst. Math. Univ. Clermont-Ferrand, Hermann, Paris, 1940. Zbl0061.11701
- [4] A. Gorny, Contribution à l'étude de fonctions dérivables d'une variable réelle, Acta Math. 71 (1939), 317-358. Zbl65.0216.01
- [5] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).
- [6] L. Hörmander, The Analysis of Linear Partial Differential Operators, I, Springer, Berlin, 1983. Zbl0521.35001
- [7] S. Mandelbrojt, Séries Adhérentes, Régularisation des Suites, Applications, Collection de Monographies sur la Théorie des Fonctions, Gauthier-Villars, Paris, 1952.
- [8] B. Mityagin, Approximate dimension and bases in nuclear spaces, Uspekhi Mat. Nauk 16 (1961), no. 4, 63-132 (in Russian); English transl.: Russian Math. Surveys 16 (1961), 59-127.
- [9] H.-J. Petzsche, On E. Borel's theorem, Math. Ann. 282 (1988), 299-313. Zbl0633.46033
- [0] J. F. Ritt, On the derivatives of a function at a point, Ann. of Math. 18 (1916), 18-23. Zbl46.0471.02
- [1] J. C. Tougeron, An introduction to the theory of Gevrey expansions and to the Borel-Laplace transform with some applications, Course of 3rd Cycle, Univ. of Toronto.
- [2] G. Valiron, Théorie des fonctions, Masson, Paris, 1966.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.