Trigonometrical series

Antoni Zygmund

  • 1935

Abstract

top
PREFACE................................... III ERRATA.................................... IV CHAPTER I. Trigonometrical series and Fourier series...... 1 1.1. Definitions. 1.2. Abel’s transformation. 1.3. Orthogonal systems of functions. Fourier series. 1.4. The trigonometrical system. 1.5. Completness of the trigonometrical system. 1.6. Bessel’s inequality. Farseval’s relation. 1.7. Remarks on series and integrals. 1.8. Miscellaneous theorems and examples. CHAPTER II. Fourier coefficients. Tests for the convergence of Fourier series........... 14 2.1. Operations on Fourier series. 2.2. Modulus of continuity. Fourier coefficients. 2.3. Formulae for partial sums. 2.4. Dini’s test. 2.5. Theorems on localization. 2.6. Functions of bounded variation. 2.7. Tests of Lebesgue and Dini-Lipschitz. 2.8. Tests of de la Vallée-Poussin, Young, and Hardy and Littlewood. 2.9. Miscellaneous theorems and examples. CHAPTER III. Summability of Fourier series.......... 40 3.1. Toeplitz matrices. Abel and Cesaro means. 3.2. Fejér’s theorem. 3.3 Summability (C, r) of Fourier series and conjugate series. 3.4. Abel’s summability. 3.5. The Cesaro summation of differentiated series. 3.6. Fourier sine series. 3.7. Convergence factors. 3.8. Summability of Fourier-Stieltjes series. 3.9. Miscellaneous theorems and examples. CHAPTER IV. Classes of functions and Fourier series.... 64 4.1. Inequalities 4.2. Mean convergence. The Riesz-Fischer theorem. 4.3. Classes B, C, S, and L φ of functions. 4.4. Parseval’s relations. 4.5. Linear operations. 4.6. Transformations of Fourier series. 4.7. Miscellaneous theorems and examples. CHAPTER V. Properties of some special series....... 108 5.1. Series with coefficients monotonically tending to 0. 5.2. Approximate expressions for such series. 5.3. A power series. 5.4. Lacunary series. 5.5. Rademacher’s series. 5.6. Applications of Rademacher’s functions. 5.7. Miscellaneous theorems and examples. CHAPTER VI. The absolute convergence of trigonometrical series.......... 131 6.1. The Lusin-Denjoy theorem. 6.2. Fatou’s theorems. 6.3. The absolute convergence of Fourier series. 6.4. Szidon’s theorem on lacunary series. 6.5. The theorems of Wiener and Levy. 6.6. Miscellaneous theorems and examples. CHAPTER VII. Conjugate series and complex methods in the theory of Fourier series........... 145 7.1. Summability of conjugate series. 7.2. Conjugate series and Fourier series. 7.3. Mean convergence of Fourier series. 7.4. Privaloff’s theorem. 7.5. Power series of bounded variation. 7.6. Miscellaneous theorems and examples. CHAPTER VIII. Divergence of Fourier series. Gibbs’s phenomenon...................... 167 8.1. Continuous functions with divergent Fourier series. 8.2. A theorem of Faber and Lebesgue. 8.3. Lebesgue’s constants. 8.4. Kolmogoroffs example. 8.5. Gibbs’s phenomenon. 8.6. Theorems of Rogosinski. 8.7. Cramer’s theorem. 8.8. Miscellaneous theorems and examples. CHAPTER IX. Further theorems on Fourier coefficients. Integration of fractional order............. 189 9.1. Remarks on the theorems of Hausdorff-Young and F. Riesz. 9.2. M. Riesz’a convexity theorems. 9.3. Proof of F. Riesz’s theorem. 9.4. Theorems of Paley. 9.5. Theorems of Hardy and Littlewood. 9.6. Banach’s theorems on lacunary coefficients. 9.7. Wiener’s theorem on functions of bounded variation. 9.8. Integrals of fractional order. 9.9. Miscellaneous theorems and examples. CHAPTER X. Further theorems on the summability and convergence of Fourier series............. 237 10.1. An extension of Fejér’s theorem. 10.2. Maximal theorems of Hardy and Littlewood. 10.3. Partial sums. 10.4. Summability C of Fourier series. 10.5. Miscellaneous theorems and examples. CHAPTER XI. Riemann’s theory of trigonometrical series....................... 267 11.1. The Cantor-Lebesgue theorem and its generalization. 11.2. Riemann’s and Fatou’s theorems. 11.3. Theorems of uniqueness. 11.4. The principle of localization. Rajchman’s theory of formal multiplication. 11.5. Sets of uniqueness and sets of multiplicity. 11.6. Uniqueness in the case of summable series. 11.7. Miscellaneous theorems and examples. CHAPTER XII. Fourier’s integral....................... 306 12.1. Fourier’s single integral. 12.2. Fourier’s repeated integral. 12 3. Summability of integrals. 12.4. Fourier transforms. TERMINOLOGICAL INDEX, NOTATIONS........................ 320 BIBLIOGRAPHY.......................... 321

How to cite

top

Antoni Zygmund. Trigonometrical series. 1935. <http://eudml.org/doc/219339>.

@book{AntoniZygmund1935,
abstract = {PREFACE................................... III ERRATA.................................... IV CHAPTER I. Trigonometrical series and Fourier series...... 1 1.1. Definitions. 1.2. Abel’s transformation. 1.3. Orthogonal systems of functions. Fourier series. 1.4. The trigonometrical system. 1.5. Completness of the trigonometrical system. 1.6. Bessel’s inequality. Farseval’s relation. 1.7. Remarks on series and integrals. 1.8. Miscellaneous theorems and examples. CHAPTER II. Fourier coefficients. Tests for the convergence of Fourier series........... 14 2.1. Operations on Fourier series. 2.2. Modulus of continuity. Fourier coefficients. 2.3. Formulae for partial sums. 2.4. Dini’s test. 2.5. Theorems on localization. 2.6. Functions of bounded variation. 2.7. Tests of Lebesgue and Dini-Lipschitz. 2.8. Tests of de la Vallée-Poussin, Young, and Hardy and Littlewood. 2.9. Miscellaneous theorems and examples. CHAPTER III. Summability of Fourier series.......... 40 3.1. Toeplitz matrices. Abel and Cesaro means. 3.2. Fejér’s theorem. 3.3 Summability (C, r) of Fourier series and conjugate series. 3.4. Abel’s summability. 3.5. The Cesaro summation of differentiated series. 3.6. Fourier sine series. 3.7. Convergence factors. 3.8. Summability of Fourier-Stieltjes series. 3.9. Miscellaneous theorems and examples. CHAPTER IV. Classes of functions and Fourier series.... 64 4.1. Inequalities 4.2. Mean convergence. The Riesz-Fischer theorem. 4.3. Classes B, C, S, and $L_φ$ of functions. 4.4. Parseval’s relations. 4.5. Linear operations. 4.6. Transformations of Fourier series. 4.7. Miscellaneous theorems and examples. CHAPTER V. Properties of some special series....... 108 5.1. Series with coefficients monotonically tending to 0. 5.2. Approximate expressions for such series. 5.3. A power series. 5.4. Lacunary series. 5.5. Rademacher’s series. 5.6. Applications of Rademacher’s functions. 5.7. Miscellaneous theorems and examples. CHAPTER VI. The absolute convergence of trigonometrical series.......... 131 6.1. The Lusin-Denjoy theorem. 6.2. Fatou’s theorems. 6.3. The absolute convergence of Fourier series. 6.4. Szidon’s theorem on lacunary series. 6.5. The theorems of Wiener and Levy. 6.6. Miscellaneous theorems and examples. CHAPTER VII. Conjugate series and complex methods in the theory of Fourier series........... 145 7.1. Summability of conjugate series. 7.2. Conjugate series and Fourier series. 7.3. Mean convergence of Fourier series. 7.4. Privaloff’s theorem. 7.5. Power series of bounded variation. 7.6. Miscellaneous theorems and examples. CHAPTER VIII. Divergence of Fourier series. Gibbs’s phenomenon...................... 167 8.1. Continuous functions with divergent Fourier series. 8.2. A theorem of Faber and Lebesgue. 8.3. Lebesgue’s constants. 8.4. Kolmogoroffs example. 8.5. Gibbs’s phenomenon. 8.6. Theorems of Rogosinski. 8.7. Cramer’s theorem. 8.8. Miscellaneous theorems and examples. CHAPTER IX. Further theorems on Fourier coefficients. Integration of fractional order............. 189 9.1. Remarks on the theorems of Hausdorff-Young and F. Riesz. 9.2. M. Riesz’a convexity theorems. 9.3. Proof of F. Riesz’s theorem. 9.4. Theorems of Paley. 9.5. Theorems of Hardy and Littlewood. 9.6. Banach’s theorems on lacunary coefficients. 9.7. Wiener’s theorem on functions of bounded variation. 9.8. Integrals of fractional order. 9.9. Miscellaneous theorems and examples. CHAPTER X. Further theorems on the summability and convergence of Fourier series............. 237 10.1. An extension of Fejér’s theorem. 10.2. Maximal theorems of Hardy and Littlewood. 10.3. Partial sums. 10.4. Summability C of Fourier series. 10.5. Miscellaneous theorems and examples. CHAPTER XI. Riemann’s theory of trigonometrical series....................... 267 11.1. The Cantor-Lebesgue theorem and its generalization. 11.2. Riemann’s and Fatou’s theorems. 11.3. Theorems of uniqueness. 11.4. The principle of localization. Rajchman’s theory of formal multiplication. 11.5. Sets of uniqueness and sets of multiplicity. 11.6. Uniqueness in the case of summable series. 11.7. Miscellaneous theorems and examples. CHAPTER XII. Fourier’s integral....................... 306 12.1. Fourier’s single integral. 12.2. Fourier’s repeated integral. 12 3. Summability of integrals. 12.4. Fourier transforms. TERMINOLOGICAL INDEX, NOTATIONS........................ 320 BIBLIOGRAPHY.......................... 321},
author = {Antoni Zygmund},
keywords = {Series},
language = {eng},
title = {Trigonometrical series},
url = {http://eudml.org/doc/219339},
year = {1935},
}

TY - BOOK
AU - Antoni Zygmund
TI - Trigonometrical series
PY - 1935
AB - PREFACE................................... III ERRATA.................................... IV CHAPTER I. Trigonometrical series and Fourier series...... 1 1.1. Definitions. 1.2. Abel’s transformation. 1.3. Orthogonal systems of functions. Fourier series. 1.4. The trigonometrical system. 1.5. Completness of the trigonometrical system. 1.6. Bessel’s inequality. Farseval’s relation. 1.7. Remarks on series and integrals. 1.8. Miscellaneous theorems and examples. CHAPTER II. Fourier coefficients. Tests for the convergence of Fourier series........... 14 2.1. Operations on Fourier series. 2.2. Modulus of continuity. Fourier coefficients. 2.3. Formulae for partial sums. 2.4. Dini’s test. 2.5. Theorems on localization. 2.6. Functions of bounded variation. 2.7. Tests of Lebesgue and Dini-Lipschitz. 2.8. Tests of de la Vallée-Poussin, Young, and Hardy and Littlewood. 2.9. Miscellaneous theorems and examples. CHAPTER III. Summability of Fourier series.......... 40 3.1. Toeplitz matrices. Abel and Cesaro means. 3.2. Fejér’s theorem. 3.3 Summability (C, r) of Fourier series and conjugate series. 3.4. Abel’s summability. 3.5. The Cesaro summation of differentiated series. 3.6. Fourier sine series. 3.7. Convergence factors. 3.8. Summability of Fourier-Stieltjes series. 3.9. Miscellaneous theorems and examples. CHAPTER IV. Classes of functions and Fourier series.... 64 4.1. Inequalities 4.2. Mean convergence. The Riesz-Fischer theorem. 4.3. Classes B, C, S, and $L_φ$ of functions. 4.4. Parseval’s relations. 4.5. Linear operations. 4.6. Transformations of Fourier series. 4.7. Miscellaneous theorems and examples. CHAPTER V. Properties of some special series....... 108 5.1. Series with coefficients monotonically tending to 0. 5.2. Approximate expressions for such series. 5.3. A power series. 5.4. Lacunary series. 5.5. Rademacher’s series. 5.6. Applications of Rademacher’s functions. 5.7. Miscellaneous theorems and examples. CHAPTER VI. The absolute convergence of trigonometrical series.......... 131 6.1. The Lusin-Denjoy theorem. 6.2. Fatou’s theorems. 6.3. The absolute convergence of Fourier series. 6.4. Szidon’s theorem on lacunary series. 6.5. The theorems of Wiener and Levy. 6.6. Miscellaneous theorems and examples. CHAPTER VII. Conjugate series and complex methods in the theory of Fourier series........... 145 7.1. Summability of conjugate series. 7.2. Conjugate series and Fourier series. 7.3. Mean convergence of Fourier series. 7.4. Privaloff’s theorem. 7.5. Power series of bounded variation. 7.6. Miscellaneous theorems and examples. CHAPTER VIII. Divergence of Fourier series. Gibbs’s phenomenon...................... 167 8.1. Continuous functions with divergent Fourier series. 8.2. A theorem of Faber and Lebesgue. 8.3. Lebesgue’s constants. 8.4. Kolmogoroffs example. 8.5. Gibbs’s phenomenon. 8.6. Theorems of Rogosinski. 8.7. Cramer’s theorem. 8.8. Miscellaneous theorems and examples. CHAPTER IX. Further theorems on Fourier coefficients. Integration of fractional order............. 189 9.1. Remarks on the theorems of Hausdorff-Young and F. Riesz. 9.2. M. Riesz’a convexity theorems. 9.3. Proof of F. Riesz’s theorem. 9.4. Theorems of Paley. 9.5. Theorems of Hardy and Littlewood. 9.6. Banach’s theorems on lacunary coefficients. 9.7. Wiener’s theorem on functions of bounded variation. 9.8. Integrals of fractional order. 9.9. Miscellaneous theorems and examples. CHAPTER X. Further theorems on the summability and convergence of Fourier series............. 237 10.1. An extension of Fejér’s theorem. 10.2. Maximal theorems of Hardy and Littlewood. 10.3. Partial sums. 10.4. Summability C of Fourier series. 10.5. Miscellaneous theorems and examples. CHAPTER XI. Riemann’s theory of trigonometrical series....................... 267 11.1. The Cantor-Lebesgue theorem and its generalization. 11.2. Riemann’s and Fatou’s theorems. 11.3. Theorems of uniqueness. 11.4. The principle of localization. Rajchman’s theory of formal multiplication. 11.5. Sets of uniqueness and sets of multiplicity. 11.6. Uniqueness in the case of summable series. 11.7. Miscellaneous theorems and examples. CHAPTER XII. Fourier’s integral....................... 306 12.1. Fourier’s single integral. 12.2. Fourier’s repeated integral. 12 3. Summability of integrals. 12.4. Fourier transforms. TERMINOLOGICAL INDEX, NOTATIONS........................ 320 BIBLIOGRAPHY.......................... 321
LA - eng
KW - Series
UR - http://eudml.org/doc/219339
ER -

Citations in EuDML Documents

top
  1. Pierre Eymard, Homomorphismes des algèbres de groupe
  2. A. Gonzälez Dominguez, Les parties finies des intégrales de Riemann-Weyl et les méthodes de régularisation
  3. L.A. Rubel, B.A. Taylor, A Fourier series method for meromorphic and entire functions
  4. K. De Leeuw, H. Mirkil, Translation-invariant function algebras on abelian groups
  5. Jean-Pierre Kahane, A partir et autour de Wiener
  6. E. H. Ostrow, E. M. Stein, A generalization of lemmas of Marcinkiewicz and Fine with applications to singular integrals
  7. Paul Koosis, Nouvelle démonstration d'un théorème de Levinson concernant la distribution des zéros d'une fonction de type exponentiel, bornée sur l'axe réel
  8. Laurent Schwartz, Étude des sommes d'exponentielles réelles
  9. Laurent Schwartz, Approximation d'une fonction quelconque par des sommes d'exponentielles imaginaires
  10. Michel Parreau, Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.