Ordinary -adic Eisenstein series and -adic -functions for unitary groups

Ming-Lun Hsieh[1]

  • [1] National Taiwan University Department of Mathematics Taipei (Taiwan)

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 3, page 987-1059
  • ISSN: 0373-0956

Abstract

top
The purpose of this work is to carry out the first step in our four-step program towards the main conjecture for by the method of Eisenstein congruence on , where is an imaginary quadratic field. We construct a -adic family of ordinary Eisenstein series on the group of unitary similitudes with the optimal constant term which is basically the product of the Kubota-Leopodlt -adic -function and a -adic -function for . This construction also provides a different point of view of -adic -functions of .

How to cite

top

Hsieh, Ming-Lun. "Ordinary $p$-adic Eisenstein series and $p$-adic $L$-functions for unitary groups." Annales de l’institut Fourier 61.3 (2011): 987-1059. <http://eudml.org/doc/219709>.

@article{Hsieh2011,
abstract = {The purpose of this work is to carry out the first step in our four-step program towards the main conjecture for $\text\{GL\}_2\times \{\mathcal\{K\}\}^\times $ by the method of Eisenstein congruence on $GU(3,1)$, where $\{\mathcal\{K\}\}$ is an imaginary quadratic field. We construct a $p$-adic family of ordinary Eisenstein series on the group of unitary similitudes $GU(3,1)$ with the optimal constant term which is basically the product of the Kubota-Leopodlt $p$-adic $L$-function and a $p$-adic $L$-function for $\text\{GL\}_2\times \{\mathcal\{K\}\}^\times $. This construction also provides a different point of view of $p$-adic $L$-functions of $\text\{GL\}_2\times \{\mathcal\{K\}\}^\times $.},
affiliation = {National Taiwan University Department of Mathematics Taipei (Taiwan)},
author = {Hsieh, Ming-Lun},
journal = {Annales de l’institut Fourier},
keywords = {Eisenstein series on unitary groups; Iwasawa-Greenberg main conjectures; -adic -functions; Selmer group; Shimura variety; Igusa scheme},
language = {eng},
number = {3},
pages = {987-1059},
publisher = {Association des Annales de l’institut Fourier},
title = {Ordinary $p$-adic Eisenstein series and $p$-adic $L$-functions for unitary groups},
url = {http://eudml.org/doc/219709},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Hsieh, Ming-Lun
TI - Ordinary $p$-adic Eisenstein series and $p$-adic $L$-functions for unitary groups
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 3
SP - 987
EP - 1059
AB - The purpose of this work is to carry out the first step in our four-step program towards the main conjecture for $\text{GL}_2\times {\mathcal{K}}^\times $ by the method of Eisenstein congruence on $GU(3,1)$, where ${\mathcal{K}}$ is an imaginary quadratic field. We construct a $p$-adic family of ordinary Eisenstein series on the group of unitary similitudes $GU(3,1)$ with the optimal constant term which is basically the product of the Kubota-Leopodlt $p$-adic $L$-function and a $p$-adic $L$-function for $\text{GL}_2\times {\mathcal{K}}^\times $. This construction also provides a different point of view of $p$-adic $L$-functions of $\text{GL}_2\times {\mathcal{K}}^\times $.
LA - eng
KW - Eisenstein series on unitary groups; Iwasawa-Greenberg main conjectures; -adic -functions; Selmer group; Shimura variety; Igusa scheme
UR - http://eudml.org/doc/219709
ER -

References

top
  1. M. Bertolini, H. Darmon, Iwasawa’s main conjecture for elliptic curves over anticyclotomic -extensions, Ann. of Math. (2) 162 (2005), 1-64 Zbl1093.11037MR2178960
  2. Ching-Li Chai, Compactification of Siegel moduli schemes, 107 (1985), Cambridge University Press, Cambridge Zbl0578.14009MR853543
  3. Ching-Li Chai, Methods for -adic monodromy, J. Inst. Math. Jussieu 7 (2008), 247-268 Zbl1140.14019MR2400722
  4. John Coates, Motivic -adic -functions, -functions and arithmetic (Durham, 1989) 153 (1991), 141-172, Cambridge Univ. Press, Cambridge Zbl0725.11029MR1110392
  5. Gerd Faltings, Ching-Li Chai, Degeneration of abelian varieties, 22 (1990), Springer-Verlag, Berlin Zbl0744.14031MR1083353
  6. Stephen Gelbart, Ilya Piatetski-Shapiro, Stephen Rallis, Explicit constructions of automorphic -functions, 1254 (1987), Springer-Verlag, Berlin Zbl0612.10022MR892097
  7. Ralph Greenberg, Iwasawa theory and -adic deformations of motives, Motives (Seattle, WA, 1991) 55 (1994), 193-223, Amer. Math. Soc., Providence, RI Zbl0819.11046MR1265554
  8. A. Grothendieck, M. Demazure, Schémas en groupes. II: Groupes de type multiplicatif, et structure des schémas en groupes généraux, 152 (1962/1964), Springer-Verlag, Berlin Zbl0209.24201MR274459
  9. Michael Harris, Eisenstein series on Shimura varieties, Ann. of Math. (2) 119 (1984), 59-94 Zbl0589.10030MR736560
  10. Michael Harris, Jian-Shu Li, Christopher M. Skinner, -adic -functions for unitary Shimura varieties. I. Construction of the Eisenstein measure, Doc. Math. Extra Vol. (2006), 393-464 (electronic) Zbl1143.11019MR2290594
  11. Haruzo Hida, Elementary theory of -functions and Eisenstein series, 26 (1993), Cambridge University Press, Cambridge Zbl0942.11024MR1216135
  12. Haruzo Hida, Control theorems of coherent sheaves on Shimura varieties of PEL type, J. Inst. Math. Jussieu 1 (2002), 1-76 Zbl1039.11041MR1954939
  13. Haruzo Hida, -adic automorphic forms on Shimura varieties, (2004), Springer-Verlag, New York Zbl1055.11032MR2055355
  14. Haruzo Hida, J. Tilouine, Katz -adic -functions, congruence modules and deformation of Galois representations, -functions and arithmetic (Durham, 1989) 153 (1991), 271-293, Cambridge Univ. Press, Cambridge Zbl0739.11022MR1110397
  15. Nicholas M. Katz, -adic -functions for CM fields, Invent. Math. 49 (1978), 199-297 Zbl0417.12003MR513095
  16. R. Kottwitz, Points on some Shimura varieties over finite fields, Journal of AMS 5 (1992), 373-443 Zbl0796.14014MR1124982
  17. Jian-Shu Li, Nonvanishing theorems for the cohomology of certain arithmetic quotients, J. Reine Angew. Math. 428 (1992), 177-217 Zbl0749.11032MR1166512
  18. Barry Mazur, A. Wiles, Class fields of abelian extensions of , Invent. Math. 76 (1984), 179-330 Zbl0545.12005MR742853
  19. C. Mœglin, J.-L. Waldspurger, Spectral decomposition and Eisenstein series, 113 (1995), Cambridge University Press, Cambridge Zbl0846.11032MR1361168
  20. Kenneth A. Ribet, A modular construction of unramified -extensions of , Invent. Math. 34 (1976), 151-162 Zbl0338.12003MR419403
  21. Goro Shimura, Confluent hypergeometric functions on tube domains, Math. Ann. 260 (1982), 269-302 Zbl0502.10013MR669297
  22. Goro Shimura, Euler products and Eisenstein series, 93 (1997), published for the Conference Board of the Mathematical Sciences, Washington, DC Zbl0906.11020MR1450866
  23. Goro Shimura, Yutaka Taniyama, Complex multiplication of abelian varieties and its applications to number theory, 6 (1961), The Mathematical Society of Japan, Tokyo Zbl0112.03502MR125113
  24. Christopher Skinner, Towards Main Conjectures for Modular Forms, RIMS Kokyuroku 1468 (2006), 149-157 Zbl1179.11037MR2459294
  25. Christopher Skinner, Eric Urban, The Iwasawa main conjecture for , (Oct 2008) Zbl1301.11074
  26. J. Tilouine, Eric Urban, Several-variable -adic families of Siegel-Hilbert cusp eigensystems and their Galois representations, Ann. Sci. École Norm. Sup. (4) 32 (1999), 499-574 Zbl0991.11016MR1693583
  27. Eric Urban, Selmer groups and the Eisenstein-Klingen ideal, Duke Math. J. 106 (2001), 485-525 Zbl1061.11027MR1813234
  28. Eric Urban, Groupes de Selmer et Fonctions -adiques pour les Représentations Modulaires Adjointes, (2006) 
  29. A. Wiles, The Iwasawa conjecture for totally real fields, Ann. of Math. (2) 131 (1990), 493-540 Zbl0719.11071MR1053488
  30. B. Zhang, Fourier-Jacobi Expansion of Eisenstein series on nonsplit unitary groups, (2007) 

NotesEmbed ?

top

You must be logged in to post comments.