Displaying similar documents to “Ordinary p -adic Eisenstein series and p -adic L -functions for unitary groups”

An explicit formula for the Hilbert symbol of a formal group

Floric Tavares Ribeiro (2011)

Annales de l’institut Fourier

Similarity:

A Brückner-Vostokov formula for the Hilbert symbol of a formal group was established by Abrashkin under the assumption that roots of unity belong to the base field. The main motivation of this work is to remove this hypothesis. It is obtained by combining methods of ( ϕ , Γ )-modules and a cohomological interpretation of Abrashkin’s technique. To do this, we build ( ϕ , Γ )-modules adapted to the false Tate curve extension and generalize some related tools like the Herr complex with explicit formulas...

Anticyclotomic Iwasawa theory of CM elliptic curves

Adebisi Agboola, Benjamin Howard (2006)

Annales de l’institut Fourier

Similarity:

We study the Iwasawa theory of a CM elliptic curve E in the anticyclotomic Z p -extension of the CM field, where p is a prime of good, ordinary reduction for E . When the complex L -function of E vanishes to even order, Rubin’s proof of the two variable main conjecture of Iwasawa theory implies that the Pontryagin dual of the p -power Selmer group over the anticyclotomic extension is a torsion Iwasawa module. When the order of vanishing is odd, work of Greenberg show that it is not a torsion...

Non-abelian congruences between L -values of elliptic curves

Daniel Delbourgo, Tom Ward (2008)

Annales de l’institut Fourier

Similarity:

Let E be a semistable elliptic curve over . We prove weak forms of Kato’s K 1 -congruences for the special values L 1 , E / ( μ p n , Δ p n ) . More precisely, we show that they are true modulo p n + 1 , rather than modulo p 2 n . Whilst not quite enough to establish that there is a non-abelian L -function living in K 1 p [ [ Gal ( ( μ p , Δ p ) / ) ] ] , they do provide strong evidence towards the existence of such an analytic object. For example, if n = 1 these verify the numerical congruences found by Tim and Vladimir Dokchitser.

The higher transvectants are redundant

Abdelmalek Abdesselam, Jaydeep Chipalkatti (2009)

Annales de l’institut Fourier

Similarity:

Let A , B denote generic binary forms, and let 𝔲 r = ( A , B ) r denote their r -th transvectant in the sense of classical invariant theory. In this paper we classify all the quadratic syzygies between the { 𝔲 r } . As a consequence, we show that each of the higher transvectants { 𝔲 r : r 2 } is redundant in the sense that it can be completely recovered from 𝔲 0 and 𝔲 1 . This result can be geometrically interpreted in terms of the incomplete Segre imbedding. The calculations rely upon the Cauchy exact sequence of S L 2 -representations,...

Ramification and moduli spaces of finite flat models

Naoki Imai (2011)

Annales de l’institut Fourier

Similarity:

We determine the type of the zeta functions and the range of the dimensions of the moduli spaces of finite flat models of two-dimensional local Galois representations over finite fields. This gives a generalization of Raynaud’s theorem on the uniqueness of finite flat models in low ramifications.