Poincaré inequalities and dimension free concentration of measure

Nathael Gozlan

Annales de l'I.H.P. Probabilités et statistiques (2010)

  • Volume: 46, Issue: 3, page 708-739
  • ISSN: 0246-0203

Abstract

top
In this paper, we consider Poincaré inequalities for non-euclidean metrics on ℝd. These inequalities enable us to derive precise dimension free concentration inequalities for product measures. This technique is appropriate for a large scope of concentration rate: between exponential and gaussian and beyond. We give equivalent functional forms of these Poincaré type inequalities in terms of transportation-cost inequalities and inf-convolution inequalities. Workable sufficient conditions are given and a comparison is made with super Poincaré inequalities.

How to cite

top

Gozlan, Nathael. "Poincaré inequalities and dimension free concentration of measure." Annales de l'I.H.P. Probabilités et statistiques 46.3 (2010): 708-739. <http://eudml.org/doc/241624>.

@article{Gozlan2010,
abstract = {In this paper, we consider Poincaré inequalities for non-euclidean metrics on ℝd. These inequalities enable us to derive precise dimension free concentration inequalities for product measures. This technique is appropriate for a large scope of concentration rate: between exponential and gaussian and beyond. We give equivalent functional forms of these Poincaré type inequalities in terms of transportation-cost inequalities and inf-convolution inequalities. Workable sufficient conditions are given and a comparison is made with super Poincaré inequalities.},
author = {Gozlan, Nathael},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Poincaré inequality; concentration of measure; transportation-cost inequalities; inf-convolution inequalities; logarithmic-Sobolev inequalities; super Poincaré inequalities},
language = {eng},
number = {3},
pages = {708-739},
publisher = {Gauthier-Villars},
title = {Poincaré inequalities and dimension free concentration of measure},
url = {http://eudml.org/doc/241624},
volume = {46},
year = {2010},
}

TY - JOUR
AU - Gozlan, Nathael
TI - Poincaré inequalities and dimension free concentration of measure
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2010
PB - Gauthier-Villars
VL - 46
IS - 3
SP - 708
EP - 739
AB - In this paper, we consider Poincaré inequalities for non-euclidean metrics on ℝd. These inequalities enable us to derive precise dimension free concentration inequalities for product measures. This technique is appropriate for a large scope of concentration rate: between exponential and gaussian and beyond. We give equivalent functional forms of these Poincaré type inequalities in terms of transportation-cost inequalities and inf-convolution inequalities. Workable sufficient conditions are given and a comparison is made with super Poincaré inequalities.
LA - eng
KW - Poincaré inequality; concentration of measure; transportation-cost inequalities; inf-convolution inequalities; logarithmic-Sobolev inequalities; super Poincaré inequalities
UR - http://eudml.org/doc/241624
ER -

References

top
  1. [1] S. Aida, T. Masuda and I. Shigekawa. Logarithmic Sobolev inequalities and exponential integrability. J. Funct. Anal. 126 (1994) 83–101. Zbl0846.46020MR1305064
  2. [2] S. Aida and D. Stroock. Moment estimates derived from Poincaré and logarithmic Sobolev inequalities. Math. Res. Lett. 1 (1994) 75–86. Zbl0862.60064MR1258492
  3. [3] C. Ané, S. Blachère, D. Chafaï, P. Fougères, I. Gentil, F. Malrieu, C. Roberto and G. Scheffer. Sur les inégalités de Sobolev logarithmiques. Panoramas et Synthèses [Panoramas and Syntheses] 10. Société Mathématique de France, Paris, 2000. Zbl0982.46026MR1845806
  4. [4] D. Bakry, F. Barthe, P. Cattiaux and A. Guillin. A simple proof of the Poincaré inequality for a large class of probability measures including the log-concave case. Electron. Comm. Probab. 13 (2008) 60–66. Zbl1186.26011MR2386063
  5. [5] F. Barthe, P. Cattiaux and C. Roberto. Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry. Rev. Mat. Iberoamericana 22 (2006) 993–1067. Zbl1118.26014MR2320410
  6. [6] F. Barthe, P. Cattiaux and C. Roberto. Isoperimetry between exponential and Gaussian. Electron. J. Probab. 12 (2007) 1212–1237 (electronic). Zbl1132.26005MR2346509
  7. [7] F. Barthe and C. Roberto. Sobolev inequalities for probability measures on the real line. Studia Math. 159 (2003) 481–497. Zbl1072.60008MR2052235
  8. [8] F. Barthe and C. Roberto. Modified logarithmic Sobolev inequalities on ℝ. Potential Anal. 29 (2008) 167–193. Zbl1170.26010MR2430612
  9. [9] S. G. Bobkov, I. Gentil and M. Ledoux. Hypercontractivity of Hamilton–Jacobi equations. J. Math. Pures Appl. (9) 80 (2001) 669–696. Zbl1038.35020MR1846020
  10. [10] S. G. Bobkov and F. Götze. Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 163 (1999) 1–28. Zbl0924.46027MR1682772
  11. [11] S. G. Bobkov and C. Houdré. Isoperimetric constants for product probability measures. Ann. Probab. 25 (1997) 184–205. Zbl0878.60013MR1428505
  12. [12] S. G. Bobkov and M. Ledoux. Poincaré’s inequalities and Talagrand’s concentration phenomenon for the exponential distribution. Probab. Theory Related Fields 107 (1997) 383–400. Zbl0878.60014MR1440138
  13. [13] S. G. Bobkov and M. Ledoux. From Brunn–Minkowski to Brascamp–Lieb and to logarithmic Sobolev inequalities. Geom. Funct. Anal. 10 (2000) 1028–1052. Zbl0969.26019MR1800062
  14. [14] S. G. Bobkov and B. Zegarlinski. Entropy bounds and isoperimetry. Mem. Amer. Math. Soc. 176 (2005) x+69. Zbl1161.46300MR2146071
  15. [15] P. Cattiaux, I. Gentil and A. Guillin. Weak logarithmic Sobolev inequalities and entropic convergence. Probab. Theory Related Fields 139 (2007) 563–603. Zbl1130.26010MR2322708
  16. [16] P. Cattiaux and A. Guillin. On quadratic transportation cost inequalities. J. Math. Pures Appl. 86 (2006) 341–361. Zbl1118.58017MR2257848
  17. [17] D. Cordero-Erausquin, W. Gangbo and C. Houdré. Inequalities for generalized entropy and optimal transportation. In Recent Advances in the Theory and Applications of Mass Transport. Contemp. Math. 353 73–94. Amer. Math. Soc., Providence, RI, 2004. Zbl1135.49026MR2079071
  18. [18] I. Gentil. From the Prékopa–Leindler inequality to modified logarithmic Sobolev inequality. Ann. Fac. Sci. Toulouse 17 (2008) 291–308. Zbl1175.26036MR2487856
  19. [19] I. Gentil, A. Guillin and L. Miclo. Modified logarithmic Sobolev inequalities and transportation inequalities. Probab. Theory Related Fields 133 (2005) 409–436. Zbl1080.26010MR2198019
  20. [20] N. Gozlan. Integral criteria for transportation cost inequalities. Electron. Comm. Probab. 11 (2006) 64–77. Zbl1112.60009MR2231734
  21. [21] N. Gozlan. Characterization of Talagrand’s like transportation-cost inequalities on the real line. J. Funct. Anal. 250 (2007) 400–425. Zbl1135.46022MR2352486
  22. [22] N. Gozlan and C. Léonard. A large deviation approach to some transportation cost inequalities. Probab. Theory Related Fields 139 (2007) 235–283. Zbl1126.60022MR2322697
  23. [23] M. Gromov and V. D. Milman. A topological application of the isoperimetric inequality. Amer. J. Math. 105 (1983) 843–854. Zbl0522.53039MR708367
  24. [24] L. Gross. Logarithmic Sobolev inequalities. Amer. J. Math. 97 (1975) 1061–1083. Zbl0318.46049MR420249
  25. [25] R. Latala and K. Oleszkiewicz. Between Sobolev and Poincaré. In Geometric Aspects of Functional Analysis. Lecture Notes in Math. 1745 147–168. Springer, Berlin, 2000. Zbl0986.60017MR1796718
  26. [26] M. Ledoux. On Talagrand’s deviation inequalities for product measures. ESAIM Probab. Statist. 1 (1996) 63–87. Zbl0869.60013MR1399224
  27. [27] M. Ledoux. The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs 89. Amer. Math. Soc., Providence, RI, 2001. Zbl0995.60002MR1849347
  28. [28] K. Marton. A simple proof of the blowing-up lemma. IEEE Trans. Inform. Theory 32 (1986) 445–446. Zbl0594.94003MR838213
  29. [29] K. Marton. Bounding ̅d-distance by informational divergence: A method to prove measure concentration. Ann. Probab. 24 (1996) 857–866. Zbl0865.60017MR1404531
  30. [30] B. Maurey. Some deviation inequalities. Geom. Funct. Anal. 1 (1991) 188–197. Zbl0756.60018MR1097258
  31. [31] V. G. Mazja. Sobolev Spaces. Springer Series in Soviet Mathematics. Springer, Berlin, 1985. MR817985
  32. [32] B. Muckenhoupt. Hardy’s inequality with weights. Studia Math. 44 (1972) 31–38. Zbl0236.26015MR311856
  33. [33] F. Otto and C. Villani. Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173 (2000) 361–400. Zbl0985.58019MR1760620
  34. [34] M. Talagrand. A new isoperimetric inequality and the concentration of measure phenomenon. In Geometric Aspects of Functional Analysis 94–124. J. Lindenstrauss and V. D. Milman (eds). Lecture Notes in Math. 1469. Springer, Berlin, 1991. Zbl0818.46047MR1122615
  35. [35] M. Talagrand. The supremum of some canonical processes. Amer. J. Math. 116 (1994) 283–325. Zbl0798.60040MR1269606
  36. [36] M. Talagrand. Concentration of measure and isoperimetric inequalities in product spaces. Publ. Math. Inst. Hautes Études Sci. 81 (1995) 73–203. Zbl0864.60013MR1361756
  37. [37] M. Talagrand. Transportation cost for Gaussian and other product measures. Geom. Funct. Anal. 6 (1996) 587–600. Zbl0859.46030MR1392331
  38. [38] C. Villani. Topics in Optimal Transportation. Graduate Studies in Mathematics 58. Amer. Math. Soc., Providence, RI, 2003. Zbl1106.90001MR1964483
  39. [39] F.-Y. Wang. Functional inequalities for empty essential spectrum. J. Funct. Anal. 170 (2000) 219–245. Zbl0946.58010MR1736202
  40. [40] F.-Y. Wang. Probability distance inequalities on Riemannian manifolds and path spaces. J. Funct. Anal. 206 (2004) 167–190. Zbl1048.58013MR2024350
  41. [41] F.-Y. Wang. A generalization of Poincaré and log-Sobolev inequalities. Potential Anal. 22 (2005) 1–15. Zbl1068.47051MR2127729
  42. [42] F.-Y. Wang. Generalized transportation-cost inequalities and applications. Potential Anal. 28 (2008) 321–334. Zbl1142.60052MR2403285

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.