From the Prékopa-Leindler inequality to modified logarithmic Sobolev inequality
Ivan Gentil[1]
- [1] CEREMADE (UMR CNRS 7534), Université Paris-Dauphine, Place du maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France
Annales de la faculté des sciences de Toulouse Mathématiques (2008)
- Volume: 17, Issue: 2, page 291-308
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topReferences
top- Ané (C.), Blachère (S.), Chafaï (D.), Fougères (P.), Gentil (I.), Malrieu (F.), Roberto (C.), and Scheffer (G.).— Sur les inégalités de Sobolev logarithmiques, volume 10 of Panoramas et Synthèses. Société Mathématique de France, Paris, (2000). Zbl0982.46026MR1845806
- Agueh (M.), Ghoussoub (N.), and Kang (X.).— Geometric inequalities via a general comparison principle for interacting gases. Geom. Funct. Anal., 14(1), p. 215-244 (2004). Zbl1122.82022MR2053603
- Bakry (D.) and Émery (M.).— Diffusions hypercontractives. In Séminaire de probabilités, XIX, 1983/84, volume 1123 of Lecture Notes in Math., p. 177-206. Springer, (1985). Zbl0561.60080MR889476
- Beckner (W.).— Geometric asymptotics and the logarithmic Sobolev inequality. Forum Math., 11(1):105-137, (1999). Zbl0917.58049MR1673903
- Bobkov (S.), Gentil (I.), and Ledoux (M.).— Hypercontractivity of Hamilton-Jacobi equations. J. Math. Pu. Appli., 80(7), p. 669-696 (2001). Zbl1038.35020MR1846020
- Bobkov (S. G.) and Ledoux (M.).— From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities. Geom. Funct. Anal., 10(5), p. 1028-1052 (2000). Zbl0969.26019MR1800062
- Bobkov (S.G.) and Zegarlinski (B.).— Entropy bounds and isoperimetry. Mem. Am. Math. Soc., 829, 69 p. (2005). Zbl1161.46300MR2146071
- Carlen (E. A.).— Superadditivity of Fisher’s information and logarithmic Sobolev inequalities. J. Funct. Anal., 101(1), p. 194-211 (1991). Zbl0732.60020
- Cordero-Erausquin (D.), Gangbo (W.), and Houdré (C.).— Inequalities for generalized entropy and optimal transportation. In Recent advances in the theory and applications of mass transport, volume 353 of Contemp. Math., p. 73-94. Amer. Math. Soc., Providence, RI, (2004). Zbl1135.49026MR2079071
- Del Pino (M.) and Dolbeault (J.).— The optimal Euclidean -Sobolev logarithmic inequality. J. Funct. Anal., 197(1), p. 151-161 (2003). Zbl1091.35029MR1957678
- Del Pino (M.), Dolbeault (J.), and Gentil (I.).— Nonlinear diffusions, hypercontractivity and the optimal -Euclidean logarithmic Sobolev inequality. J. Math. Anal. Appl., 293(2), p. 375-388 (2004). Zbl1058.35124MR2053885
- Gentil (I.).— The general optimal -Euclidean logarithmic Sobolev inequality by Hamilton-Jacobi equations. J. Funct. Anal., 202(2), p. 591-599 (2003). Zbl1173.35424MR1990539
- Gentil (I.), Guillin (A.), and Miclo (L.).— Modified logarithmic Sobolev inequalities and transportation inequalities. Probab. Theory Related Fields, 133(3), p. 409-436 (2005). Zbl1080.26010MR2198019
- Gentil (I.), Guillin (A.), and Miclo (L.).— Logarithmic sobolev inequalities in curvature null. Rev. Mat. Iberoamericana, 23(1), p. 237-260 (2007). Zbl1123.26022MR2351133
- Gross (L.).— Logarithmic Sobolev inequalities. Amer. J. Math., 97(4), p. 1061-1083 (1975). Zbl0318.46049MR420249
- Gupta (S. D.).— Brunn-Minkowski inequality and its aftermath. J. Multivariate Anal., 10, p. 296-318 (1980). Zbl0467.26008MR588074
- Maurey (B.).— Inégalité de Brunn-Minkowski-Lusternik, et autres inégalités géométriques et fonctionnelles. Séminaire Bourbaki, 928, (2003/04). Zbl1101.52002MR2167203
- Otto (F.) and Villani (C.).— Generalization of an inequality by Talagrand, and links with the logarithmic Sobolev inequality. J. Funct. Anal., 173(2), p. 361-400 (2000). Zbl0985.58019MR1760620
- Talagrand (M.).— Concentration of measure and isoperimetric inequalities in product spaces. Inst. Hautes Études Sci. Publ. Math., (81), p. 73-205 (1995). Zbl0864.60013MR1361756
- Weissler (F. B.).— Logarithmic Sobolev inequalities for the heat-diffusion semigroup. Trans. Am. Math. Soc., 237, p. 255-269 (1978). Zbl0376.47019MR479373