From the Prékopa-Leindler inequality to modified logarithmic Sobolev inequality

Ivan Gentil[1]

  • [1] CEREMADE (UMR CNRS 7534), Université Paris-Dauphine, Place du maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France

Annales de la faculté des sciences de Toulouse Mathématiques (2008)

  • Volume: 17, Issue: 2, page 291-308
  • ISSN: 0240-2963

Abstract

top
We develop in this paper an improvement of the method given by S. Bobkov and M. Ledoux in [BL00]. Using the Prékopa-Leindler inequality, we prove a modified logarithmic Sobolev inequality adapted for all measures on n , with a strictly convex and super-linear potential. This inequality implies modified logarithmic Sobolev inequality, developed in [GGM05, GGM07], for all uniformly strictly convex potential as well as the Euclidean logarithmic Sobolev inequality.

How to cite

top

Gentil, Ivan. "From the Prékopa-Leindler inequality to modified logarithmic Sobolev inequality." Annales de la faculté des sciences de Toulouse Mathématiques 17.2 (2008): 291-308. <http://eudml.org/doc/10087>.

@article{Gentil2008,
abstract = {We develop in this paper an improvement of the method given by S. Bobkov and M. Ledoux in [BL00]. Using the Prékopa-Leindler inequality, we prove a modified logarithmic Sobolev inequality adapted for all measures on $\{\{\{\mathbb\{R\}\}\}\}^n$, with a strictly convex and super-linear potential. This inequality implies modified logarithmic Sobolev inequality, developed in [GGM05, GGM07], for all uniformly strictly convex potential as well as the Euclidean logarithmic Sobolev inequality.},
affiliation = {CEREMADE (UMR CNRS 7534), Université Paris-Dauphine, Place du maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France},
author = {Gentil, Ivan},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {logarithmic Sobolev inequality; convex function; measure; potential of the measure},
language = {eng},
month = {6},
number = {2},
pages = {291-308},
publisher = {Université Paul Sabatier, Toulouse},
title = {From the Prékopa-Leindler inequality to modified logarithmic Sobolev inequality},
url = {http://eudml.org/doc/10087},
volume = {17},
year = {2008},
}

TY - JOUR
AU - Gentil, Ivan
TI - From the Prékopa-Leindler inequality to modified logarithmic Sobolev inequality
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2008/6//
PB - Université Paul Sabatier, Toulouse
VL - 17
IS - 2
SP - 291
EP - 308
AB - We develop in this paper an improvement of the method given by S. Bobkov and M. Ledoux in [BL00]. Using the Prékopa-Leindler inequality, we prove a modified logarithmic Sobolev inequality adapted for all measures on ${{{\mathbb{R}}}}^n$, with a strictly convex and super-linear potential. This inequality implies modified logarithmic Sobolev inequality, developed in [GGM05, GGM07], for all uniformly strictly convex potential as well as the Euclidean logarithmic Sobolev inequality.
LA - eng
KW - logarithmic Sobolev inequality; convex function; measure; potential of the measure
UR - http://eudml.org/doc/10087
ER -

References

top
  1. Ané (C.), Blachère (S.), Chafaï (D.), Fougères (P.), Gentil (I.), Malrieu (F.), Roberto (C.), and Scheffer (G.).— Sur les inégalités de Sobolev logarithmiques, volume 10 of Panoramas et Synthèses. Société Mathématique de France, Paris, (2000). Zbl0982.46026MR1845806
  2. Agueh (M.), Ghoussoub (N.), and Kang (X.).— Geometric inequalities via a general comparison principle for interacting gases. Geom. Funct. Anal., 14(1), p. 215-244 (2004). Zbl1122.82022MR2053603
  3. Bakry (D.) and Émery (M.).— Diffusions hypercontractives. In Séminaire de probabilités, XIX, 1983/84, volume 1123 of Lecture Notes in Math., p. 177-206. Springer, (1985). Zbl0561.60080MR889476
  4. Beckner (W.).— Geometric asymptotics and the logarithmic Sobolev inequality. Forum Math., 11(1):105-137, (1999). Zbl0917.58049MR1673903
  5. Bobkov (S.), Gentil (I.), and Ledoux (M.).— Hypercontractivity of Hamilton-Jacobi equations. J. Math. Pu. Appli., 80(7), p. 669-696 (2001). Zbl1038.35020MR1846020
  6. Bobkov (S. G.) and Ledoux (M.).— From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities. Geom. Funct. Anal., 10(5), p. 1028-1052 (2000). Zbl0969.26019MR1800062
  7. Bobkov (S.G.) and Zegarlinski (B.).— Entropy bounds and isoperimetry. Mem. Am. Math. Soc., 829, 69 p. (2005). Zbl1161.46300MR2146071
  8. Carlen (E. A.).— Superadditivity of Fisher’s information and logarithmic Sobolev inequalities. J. Funct. Anal., 101(1), p. 194-211 (1991). Zbl0732.60020
  9. Cordero-Erausquin (D.), Gangbo (W.), and Houdré (C.).— Inequalities for generalized entropy and optimal transportation. In Recent advances in the theory and applications of mass transport, volume 353 of Contemp. Math., p. 73-94. Amer. Math. Soc., Providence, RI, (2004). Zbl1135.49026MR2079071
  10. Del Pino (M.) and Dolbeault (J.).— The optimal Euclidean L p -Sobolev logarithmic inequality. J. Funct. Anal., 197(1), p. 151-161 (2003). Zbl1091.35029MR1957678
  11. Del Pino (M.), Dolbeault (J.), and Gentil (I.).— Nonlinear diffusions, hypercontractivity and the optimal L p -Euclidean logarithmic Sobolev inequality. J. Math. Anal. Appl., 293(2), p. 375-388 (2004). Zbl1058.35124MR2053885
  12. Gentil (I.).— The general optimal L p -Euclidean logarithmic Sobolev inequality by Hamilton-Jacobi equations. J. Funct. Anal., 202(2), p. 591-599 (2003). Zbl1173.35424MR1990539
  13. Gentil (I.), Guillin (A.), and Miclo (L.).— Modified logarithmic Sobolev inequalities and transportation inequalities. Probab. Theory Related Fields, 133(3), p. 409-436 (2005). Zbl1080.26010MR2198019
  14. Gentil (I.), Guillin (A.), and Miclo (L.).— Logarithmic sobolev inequalities in curvature null. Rev. Mat. Iberoamericana, 23(1), p. 237-260 (2007). Zbl1123.26022MR2351133
  15. Gross (L.).— Logarithmic Sobolev inequalities. Amer. J. Math., 97(4), p. 1061-1083 (1975). Zbl0318.46049MR420249
  16. Gupta (S. D.).— Brunn-Minkowski inequality and its aftermath. J. Multivariate Anal., 10, p. 296-318 (1980). Zbl0467.26008MR588074
  17. Maurey (B.).— Inégalité de Brunn-Minkowski-Lusternik, et autres inégalités géométriques et fonctionnelles. Séminaire Bourbaki, 928, (2003/04). Zbl1101.52002MR2167203
  18. Otto (F.) and Villani (C.).— Generalization of an inequality by Talagrand, and links with the logarithmic Sobolev inequality. J. Funct. Anal., 173(2), p. 361-400 (2000). Zbl0985.58019MR1760620
  19. Talagrand (M.).— Concentration of measure and isoperimetric inequalities in product spaces. Inst. Hautes Études Sci. Publ. Math., (81), p. 73-205 (1995). Zbl0864.60013MR1361756
  20. Weissler (F. B.).— Logarithmic Sobolev inequalities for the heat-diffusion semigroup. Trans. Am. Math. Soc., 237, p. 255-269 (1978). Zbl0376.47019MR479373

NotesEmbed ?

top

You must be logged in to post comments.