Refined Hardy inequalities

Hajer Bahouri; Jean-Yves Chemin; Isabelle Gallagher

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2006)

  • Volume: 5, Issue: 3, page 375-391
  • ISSN: 0391-173X

Abstract

top
The aim of this article is to present “refined” Hardy-type inequalities. Those inequalities are generalisations of the usual Hardy inequalities, their additional feature being that they are invariant under oscillations: when applied to highly oscillatory functions, both sides of the refined inequality are of the same order of magnitude. The proof relies on paradifferential calculus and Besov spaces. It is also adapted to the case of the Heisenberg group.

How to cite

top

Bahouri, Hajer, Chemin, Jean-Yves, and Gallagher, Isabelle. "Refined Hardy inequalities." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 5.3 (2006): 375-391. <http://eudml.org/doc/242839>.

@article{Bahouri2006,
abstract = {The aim of this article is to present “refined” Hardy-type inequalities. Those inequalities are generalisations of the usual Hardy inequalities, their additional feature being that they are invariant under oscillations: when applied to highly oscillatory functions, both sides of the refined inequality are of the same order of magnitude. The proof relies on paradifferential calculus and Besov spaces. It is also adapted to the case of the Heisenberg group.},
author = {Bahouri, Hajer, Chemin, Jean-Yves, Gallagher, Isabelle},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3},
pages = {375-391},
publisher = {Scuola Normale Superiore, Pisa},
title = {Refined Hardy inequalities},
url = {http://eudml.org/doc/242839},
volume = {5},
year = {2006},
}

TY - JOUR
AU - Bahouri, Hajer
AU - Chemin, Jean-Yves
AU - Gallagher, Isabelle
TI - Refined Hardy inequalities
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2006
PB - Scuola Normale Superiore, Pisa
VL - 5
IS - 3
SP - 375
EP - 391
AB - The aim of this article is to present “refined” Hardy-type inequalities. Those inequalities are generalisations of the usual Hardy inequalities, their additional feature being that they are invariant under oscillations: when applied to highly oscillatory functions, both sides of the refined inequality are of the same order of magnitude. The proof relies on paradifferential calculus and Besov spaces. It is also adapted to the case of the Heisenberg group.
LA - eng
UR - http://eudml.org/doc/242839
ER -

References

top
  1. [1] H. Bahouri, J.-Y. Chemin and C.-J. Xu, Trace and trace lifting theorems in weighted Sobolev spaces, J. Inst. Math. Jussieu 4 (2005), 509–552. Zbl1089.35016MR2171730
  2. [2] H. Bahouri, P. Gérard and C.-J. Xu, Espaces de Besov et estimations de Strichartz généralisées sur le groupe de Heisenberg, J. Anal. Math. 82 (2000), 93–118. Zbl0965.22010MR1799659
  3. [3] H. Bahouri and I. Gallagher, Paraproduit sur le groupe de Heisenberg et applications, Rev. Mat. Iberoamericana 17 (2001), 69–105. Zbl0971.43002MR1846091
  4. [4] J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup. 14 (1981), 209–246. Zbl0495.35024MR631751
  5. [5] C. E. Cancelier, J.-Y. Chemin and C.-J. Xu, Calcul de Weyl-Hörmander et opérateurs sous-elliptiques, Ann. Inst. Fourier (Grenoble) 43 (1993), 1157–1178. Zbl0797.35008MR1252940
  6. [6] J.-Y. Chemin, “Fluides Parfaits Incompressibles”, Astérisque, Vol. 230, 1995. Zbl0829.76003MR1340046
  7. [7] J.-Y. Chemin and C.-J. Xu, Inclusions de Sobolev en calcul de Weyl-Hörmander et champs de vecteurs sous-elliptiques, Ann. Sci. École Norm. Sup. 30 (1997), 719–751. Zbl0892.35161MR1476294
  8. [8] J. Farautand) K. Harzallah, “Deux Cours d’Analyse Harmonique”, École d’Été d’analyse harmonique de Tunis, 1984. Progress in Mathematics, Birkh a ¨ user. Zbl0622.43001MR898880
  9. [9] D. Geller, Fourier analysis on the Heisenberg groups, Proc. Natl. Acad. Sciences U.S.A, 74 (1977), 1328–1331. Zbl0351.43012MR486312
  10. [10] P. Gérard, Y. Meyer and F. Oru, Inégalités de Sobolev précisées, Séminaire EDP, École Polytechnique, France, Décembre 1996. Zbl1066.46501MR1482810
  11. [11] G. H. Hardy, Note on a theorem of Hilbert, Math. Zeit., 6 (1920), 314–317. Zbl47.0207.01MR1544414JFM47.0207.01
  12. [12] G. H. Hardy, An inequality between integrals, Messenger of Maths. 54 (1925), 150–156. JFM51.0192.01
  13. [13] D. Jerison, The Poincaré inequality for vector fields satisfying Hörmander’s conditions, Duke Math. J., 53 (1986), 503–523. Zbl0614.35066MR850547
  14. [14] D. Jerison, The Dirichlet problem for the Kohn Laplacian on the Heisenberg group, I, J. Funct. Anal. 43 (1981), 97–142. Zbl0493.58021MR639800
  15. [15] D. Jerison, The Dirichlet problem for the Kohn Laplacian on the Heisenberg group, II, J. Funct. Anal. 43 (1981), 224–257. Zbl0493.58022MR633978
  16. [16] A. I. Nachman, The Wave Equation on the Heisenberg Group, Comm. Partial Differential Equations 7 (1982), 675–714. Zbl0524.35065MR660749
  17. [17] L. Rothschild and E. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), 247–320. Zbl0346.35030MR436223
  18. [18] E.M. Stein, “Harmonic Analysis”, Princeton University Press, 1993. Zbl0821.42001MR1232192
  19. [19] M. E. Taylor, “Noncommutative Harmonic Analysis”, Mathematical Surveys and Monographs, Vol. 22, AMS, Providence, Rhode Island, 1986. Zbl0604.43001MR852988

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.