Univalent σ -harmonic mappings : applications to composites

Giovanni Alessandrini; Vincenzo Nesi

ESAIM: Control, Optimisation and Calculus of Variations (2002)

  • Volume: 7, page 379-406
  • ISSN: 1292-8119

Abstract

top
This paper is part of a larger project initiated with [2]. The final aim of the present paper is to give bounds for the homogenized (or effective) conductivity in two dimensional linear conductivity. The main focus is therefore the periodic setting. We prove new variational principles that are shown to be of interest in finding bounds on the homogenized conductivity. Our results unify previous approaches by the second author and make transparent the central role of quasiconformal mappings in all the two dimensional G -closure problems in conductivity.

How to cite

top

Alessandrini, Giovanni, and Nesi, Vincenzo. "Univalent $\sigma $-harmonic mappings : applications to composites." ESAIM: Control, Optimisation and Calculus of Variations 7 (2002): 379-406. <http://eudml.org/doc/245062>.

@article{Alessandrini2002,
abstract = {This paper is part of a larger project initiated with [2]. The final aim of the present paper is to give bounds for the homogenized (or effective) conductivity in two dimensional linear conductivity. The main focus is therefore the periodic setting. We prove new variational principles that are shown to be of interest in finding bounds on the homogenized conductivity. Our results unify previous approaches by the second author and make transparent the central role of quasiconformal mappings in all the two dimensional $G$-closure problems in conductivity.},
author = {Alessandrini, Giovanni, Nesi, Vincenzo},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {effective properties; harmonic mappings; composite materials; quasiregular mappings; two-dimensional linear conductivity},
language = {eng},
pages = {379-406},
publisher = {EDP-Sciences},
title = {Univalent $\sigma $-harmonic mappings : applications to composites},
url = {http://eudml.org/doc/245062},
volume = {7},
year = {2002},
}

TY - JOUR
AU - Alessandrini, Giovanni
AU - Nesi, Vincenzo
TI - Univalent $\sigma $-harmonic mappings : applications to composites
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2002
PB - EDP-Sciences
VL - 7
SP - 379
EP - 406
AB - This paper is part of a larger project initiated with [2]. The final aim of the present paper is to give bounds for the homogenized (or effective) conductivity in two dimensional linear conductivity. The main focus is therefore the periodic setting. We prove new variational principles that are shown to be of interest in finding bounds on the homogenized conductivity. Our results unify previous approaches by the second author and make transparent the central role of quasiconformal mappings in all the two dimensional $G$-closure problems in conductivity.
LA - eng
KW - effective properties; harmonic mappings; composite materials; quasiregular mappings; two-dimensional linear conductivity
UR - http://eudml.org/doc/245062
ER -

References

top
  1. [1] G. Alessandrini and R. Magnanini, Elliptic equation in divergence form, geometric critical points of solutions and Stekloff eigenfunctions. SIAM J. Math. Anal. 25 (1994) 1259-1268. Zbl0809.35070MR1289138
  2. [2] G. Alessandrini and V. Nesi, Univalent σ -harmonic mappings. Arch. Rational Mech. Anal. 158 (2001) 155-171. Zbl0977.31006MR1838656
  3. [3] G. Alessandrini and V. Nesi, Univalent σ -harmonic mappings: Connections with quasiconformal mappings, Quaderni Matematici II serie, 510 Novembre 2001. Dipartimento di Scienze Matematiche, Trieste. J. Anal. Math. (to appear). MR2001070
  4. [4] G. Allaire and G. Francfort, Existence of minimizers for non-quasiconvex functionals arising in optimal design. Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998) 301-339. Zbl0913.49008MR1629349
  5. [5] G. Allaire and V. Lods, Minimizers for a double-well problem with affine boundary conditions. Proc. Roy. Soc. Edinburgh Sect. A 129 (1999) 439-466. Zbl0958.49008MR1693645
  6. [6] K. Astala, Area distortion of quasiconformal mappings. Acta Math. 173 (1994) 37-60. Zbl0815.30015MR1294669
  7. [7] K. Astala and M. Miettinen, On quasiconformal mappings and 2 -dimensional G -closure problems. Arch. Rational Mech. Anal. 143 (1998) 207-240. Zbl0912.65106MR1649998
  8. [8] K. Astala and V. Nesi, Composites and quasiconformal mappings: New optimal bounds. University of Jyväskylä, Department of Mathematics, Preprint 233, Ottobre 2000, Jyväskylä, Finland. Calc. Var. Partial Differential Equations (to appear). Zbl1106.74052MR2020365
  9. [9] J.M. Ball and R.D. James, Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal. 100 (1987) 13-52. Zbl0629.49020MR906132
  10. [10] P. Bauman, A. Marini and V. Nesi, Univalent solutions of an elliptic system of partial differential equations arising in homogenization. Indiana Univ. Math. J. 50 (2001). Zbl1330.35121MR1871388
  11. [11] A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures. North Holland, Amsterdam (1978). Zbl0404.35001MR503330
  12. [12] L. Bers, F. John and M. Schechter, Partial Differential Equations. Interscience, New York (1964). Zbl0126.00207MR163043
  13. [13] L. Bers and L. Nirenberg, On a representation theorem for linear elliptic systems with discontinuous coefficients and its applications, in Convegno Internazionale sulle Equazioni alle Derivate Parziali. Cremonese, Roma (1955) 111-138. Zbl0067.32503MR76981
  14. [14] A. Cherkaev, Necessary conditions technique in optimization of structures. J. Mech. Phys. Solids (accepted). 
  15. [15] A. Cherkaev, Variational methods for structural optimization. Springer-Verlag, Berlin, Appl. Math. Sci. 140 (2000). Zbl0956.74001MR1763123
  16. [16] A. Cherkaev and L.V. Gibiansky, Extremal structures of multiphase heat conducting composites. Int. J. Solids Struct. 18 (1996) 2609-2618. Zbl0901.73050
  17. [17] A.M. Dykhne, Conductivity of a two dimensional two-phase system. Soviet Phys. JETP 32 (1971) 63-65. 
  18. [18] A. Eremenko and D.H. Hamilton, The area distortion by quasiconformal mappings. Proc. Amer. Math. Soc. 123 (1995) 2793-2797. Zbl0841.30013MR1283548
  19. [19] G. Francfort and G.W. Milton, Optimal bounds for conduction in two-dimensional, multiphase polycrystalline media. J. Stat. Phys. 46 (1987) 161-177. MR887243
  20. [20] G. Francfort and F. Murat, Optimal bounds for conduction in two-dimensional, two phase, anisotropic media, in Non-classical continuum mechanics, edited by R.J. Knops and A.A. Lacey. Cambridge, London Math. Soc. Lecture Note Ser. 122 (1987) 197-212. Zbl0668.73018MR926503
  21. [21] L.V. Gibiansky and O. Sigmund, Multiphase composites with extremal bulk modulus. J. Mech. Phys. Solids 48 (2000) 461-498. Zbl0989.74060MR1737888
  22. [22] Y. Grabovsky, The G -closure of two well ordered anisotropic conductors. Proc. Roy. Soc. Edinburgh Sect. A 123 (1993) 423-432. Zbl0785.49015MR1226610
  23. [23] Z. Hashin and S. Shtrikman, A variational approach to the theory of effective magnetic permeability of multiphase materials. J. Appl. Phys. 33 (1962) 3125-3131. Zbl0111.41401
  24. [24] J. Keller, A theorem on the conductivity of a composite medium. J. Math. Phys. 5 (1964) 548-549. Zbl0129.44001MR161559
  25. [25] W. Kohler and G. Papanicolaou, Bounds for the effective conductivity of random media. Springer, Lecture Notes in Phys. 154, p. 111. Zbl0496.73002MR674963
  26. [26] R.V. Kohn, The relaxation of a double energy. Continuum Mech. Thermodyn. 3 (1991) 193-236. Zbl0825.73029MR1122017
  27. [27] R.V. Kohn and G.W. Milton, On bounding the effective conductivity of anisotropic composites, in Homogenization and effective moduli of materials and media, edited by J.L. Ericksen, D. Kinderlehrer, R. Kohn and J.-L. Lions. Springer, New York (1986) 97-125. Zbl0631.73012MR859413
  28. [28] R.V. Kohn and G. Strang, Optimal design and relaxation of variational problems I, II, III. Comm. Pure Appl. Math. 39 (1986) 113-137, 139-182, 353-377. Zbl0621.49008MR820342
  29. [29] O. Lehto and K.I. Virtanen, Quasiconformal Mappings in the Plane. Springer, Berlin (1973). Zbl0267.30016MR344463
  30. [30] K.A. Lurie and A.V. Cherkaev, Exact estimates of conductivity of composites formed by two isotropically conducting media taken in prescribed proportions. Proc. Roy. Soc. Edinburgh Sect. A 99 (1984) 71-87. Zbl0564.73079MR781086
  31. [31] K.A. Lurie and A.V. Cherkaev, G -closure of a set of anisotropically conducting media in the two-dimensional case. J. Optim. Theory Appl. 42 (1984) 283-304. Zbl0504.73060MR737972
  32. [32] K.A. Lurie and A.V. Cherkaev, The problem of formation of an optimal isotropic multicomponent composite. J. Optim. Theory Appl. 46 (1985) 571-589. Zbl0545.73005
  33. [33] K.S. Mendelson, Effective conductivity of a two-phase material with cylindrical phase boundaries. J. Appl. Phys. 46 (1975) 917. 
  34. [34] G.W. Milton, Concerning bounds on the transport and mechanical properties of multicomponent composite materials. Appl. Phys. A 26 (1981) 125-130. 
  35. [35] G.W. Milton, On characterizing the set of possible effective tensors of composites: The variational method and the translation method. Comm. Pure Appl. Math. 43 (1990) 63-125. Zbl0751.73041MR1024190
  36. [36] G.W. Milton and R.V. Kohn, Variational bounds on the effective moduli of anisotropic composites. J. Mech. Phys. Solids 36 (1988) 597-629. Zbl0672.73012MR969257
  37. [37] G.W. Milton and V. Nesi, Optimal G -closure bounds via stability under lamination. Arch. Rational Mech. Anal. 150 (1999) 191-207. Zbl0941.74012MR1738117
  38. [38] S. Müller, Variational models for microstructure and phase transitions, Calculus of variations and geometric evolution problems. Cetraro (1996) 85-210. Springer, Berlin, Lecture Notes in Math. 1713 (1999). Zbl0968.74050MR1731640
  39. [39] F. Murat, Compacité par compensation : condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8 (1981) 69-102. Zbl0464.46034MR616901
  40. [40] F. Murat and L. Tartar, Calcul des variations et homogénéisation, in Les Méthodes de L’Homogénéisation : Théorie et Applications en Physique. Eyrolles (1985) 319-369. 
  41. [41] V. Nesi, Using quasiconvex functionals to bound the effective conductivity of composite materials. Proc. Roy. Soc. Edinburgh Sect. A 123 (1993) 633-679. Zbl0791.49042MR1237607
  42. [42] V. Nesi, Bounds on the effective conductivity of 2 d composites made of n 3 isotropic phases in prescribed volume fractions: The weighted translation method. Proc. Roy. Soc. Edinburgh Sect. A 125 (1995) 1219-1239. Zbl0852.35016MR1363001
  43. [43] V. Nesi, Quasiconformal mappings as a tool to study the effective conductivity of two dimensional composites made of n 2 anisotropic phases in prescribed volume fraction. Arch. Rational Mech. Anal. 134 (1996) 17-51. Zbl0854.30015MR1392308
  44. [44] K. Schulgasser, Sphere assemblage model for polycrystal and symmetric materials. J. Appl. Phys. 54 (1982) 1380-1382. 
  45. [45] K. Schulgasser, A reciprocal theorem in two dimensional heat transfer and its implications. Internat. Commun. Heat Mass Transfer 19 (1992) 497-515. 
  46. [46] S. Spagnolo, Sul limite delle soluzioni di problemi di Cauchy relativi all’equazione del calore. Ann. Scuola Norm. Sup. Pisa (3) 21 (1967) 657-699. Zbl0153.42103
  47. [47] S. Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann. Scuola Norm. Sup. Pisa (3) 22 (1968) 571-597. Zbl0174.42101MR240443
  48. [48] L. Tartar, Estimations de coefficients homogénéisés. Springer, Berlin, Lecture Notes in Math. 704 (1978) 364-373. English translation: Estimations of homogenized coefficients, in Topics in the mathematical modelling of composite materials, 9-20. Birkhäuser, Progr. Nonlinear Differential Equations Appl. 31. Zbl0920.35018MR540123
  49. [49] L. Tartar, Estimations fines des coefficients homogénéisés, in Ennio De Giorgi’s Colloquium (Paris 1983), edited by P. Kree. Pitman, Boston (1985) 168-187. Zbl0586.35004
  50. [50] L. Tartar, Compensated compactness and applications to p.d.e. in nonlinear analysis and mechanics, in Heriot–Watt Symposium, Vol. IV, edited by R.J. Knops. Pitman, Boston (1979) 136-212. Zbl0437.35004
  51. [51] L. Tonelli, Fondamenti di calcolo delle variazioni. Zanichelli, Bologna (1921). JFM48.0581.09
  52. [52] I.N. Vekua, Generalized Analytic Functions. Pergamon, Oxford (1962). Zbl0100.07603MR150320
  53. [53] V.V. Zhikov, Estimates for the averaged matrix and the averaged tensor. Russian Math. Surveys (46) 3 (1991) 65-136. Zbl0751.15014MR1134090

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.