Entire solutions in for a class of Allen-Cahn equations
Francesca Alessio; Piero Montecchiari
ESAIM: Control, Optimisation and Calculus of Variations (2005)
- Volume: 11, Issue: 4, page 633-672
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topAlessio, Francesca, and Montecchiari, Piero. "Entire solutions in $\mathbb {R}^{2}$ for a class of Allen-Cahn equations." ESAIM: Control, Optimisation and Calculus of Variations 11.4 (2005): 633-672. <http://eudml.org/doc/245111>.
@article{Alessio2005,
abstract = {We consider a class of semilinear elliptic equations of the form\[ -\varepsilon ^\{2\}\Delta u(x,y)+a(x)W^\{\prime \}(u(x,y))=0,\quad (x,y)\in \mathbb \{R\}^\{2\} \]where $\varepsilon >0$, $a:\mathbb \{R\}\rightarrow \mathbb \{R\}$ is a periodic, positive function and $W:\mathbb \{R\}\rightarrow \mathbb \{R\}$ is modeled on the classical two well Ginzburg-Landau potential $W(s)=(s^\{2\}-1)^\{2\}$. We look for solutions to (1) which verify the asymptotic conditions $u(x,y)\rightarrow \pm 1$ as $x\rightarrow \pm \infty $ uniformly with respect to $y\in \mathbb \{R\}$. We show via variational methods that if $\varepsilon $ is sufficiently small and $a$ is not constant, then (1) admits infinitely many of such solutions, distinct up to translations, which do not exhibit one dimensional symmetries.},
author = {Alessio, Francesca, Montecchiari, Piero},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {heteroclinic solutions; elliptic equations; variational methods; variational methods.},
language = {eng},
number = {4},
pages = {633-672},
publisher = {EDP-Sciences},
title = {Entire solutions in $\mathbb \{R\}^\{2\}$ for a class of Allen-Cahn equations},
url = {http://eudml.org/doc/245111},
volume = {11},
year = {2005},
}
TY - JOUR
AU - Alessio, Francesca
AU - Montecchiari, Piero
TI - Entire solutions in $\mathbb {R}^{2}$ for a class of Allen-Cahn equations
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2005
PB - EDP-Sciences
VL - 11
IS - 4
SP - 633
EP - 672
AB - We consider a class of semilinear elliptic equations of the form\[ -\varepsilon ^{2}\Delta u(x,y)+a(x)W^{\prime }(u(x,y))=0,\quad (x,y)\in \mathbb {R}^{2} \]where $\varepsilon >0$, $a:\mathbb {R}\rightarrow \mathbb {R}$ is a periodic, positive function and $W:\mathbb {R}\rightarrow \mathbb {R}$ is modeled on the classical two well Ginzburg-Landau potential $W(s)=(s^{2}-1)^{2}$. We look for solutions to (1) which verify the asymptotic conditions $u(x,y)\rightarrow \pm 1$ as $x\rightarrow \pm \infty $ uniformly with respect to $y\in \mathbb {R}$. We show via variational methods that if $\varepsilon $ is sufficiently small and $a$ is not constant, then (1) admits infinitely many of such solutions, distinct up to translations, which do not exhibit one dimensional symmetries.
LA - eng
KW - heteroclinic solutions; elliptic equations; variational methods; variational methods.
UR - http://eudml.org/doc/245111
ER -
References
top- [1] S. Alama, L. Bronsard and C. Gui, Stationary layered solutions in for an Allen-Cahn system with multiple well potential. Calc. Var. 5 (1997) 359–390. Zbl0883.35036
- [2] G. Alberti, L. Ambrosio and X. Cabré, On a long-standing conjecture of E. De Giorgi: Symmetry in 3D for general nonlinearities and a local minimality property. Acta Appl. Math. 65 (2001) 9–33. Zbl1121.35312
- [3] F. Alessio, L. Jeanjean and P. Montecchiari, Stationary layered solutions in for a class of non autonomous Allen-Cahn equations. Calc. Var. Partial Differ. Equ. 11 (2000) 177–202. Zbl0965.35050
- [4] F. Alessio, L. Jeanjean and P. Montecchiari, Existence of infinitely many stationary layered solutions in for a class of periodic Allen Cahn Equations. Commun. Partial Differ. Equ. 27 (2002) 1537–1574. Zbl1125.35342
- [5] L. Ambrosio and X. Cabre, Entire solutions of semilinear elliptic equations in and a conjecture of De Giorgi. J. Am. Math. Soc. 13 (2000) 725–739. Zbl0968.35041
- [6] V. Bargert, On minimal laminations on the torus. Ann. Inst. H. Poincaré Anal. Nonlinéaire 6 (1989) 95–138. Zbl0678.58014
- [7] M.T. Barlow, R.F. Bass and C. Gui, The Liouville property and a conjecture of De Giorgi. Comm. Pure Appl. Math. 53 (2000) 1007–1038. Zbl1072.35526
- [8] H. Berestycki, F. Hamel and R. Monneau, One-dimensional symmetry for some bounded entire solutions of some elliptic equations. Duke Math. J. 103 (2000) 375–396. Zbl0954.35056
- [9] E. De Giorgi, Convergence problems for functionals and operators, in Proc. Int. Meeting on Recent Methods in Nonlinear Analysis. Rome, E. De Giorgi et al. Eds. (1978). Zbl0405.49001
- [10] A. Farina, Symmetry for solutions of semilinear elliptic equations in and related conjectures. Ricerche Mat. (in memory of Ennio De Giorgi) 48 (1999) 129–154. Zbl0940.35084
- [11] N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems. Math. Ann. 311 (1998) 481–491. Zbl0918.35046
- [12] J. Moser, Minimal solutions of variational problem on a torus. Ann. Inst. H. Poincaré Anal. NonLinéaire 3 (1986) 229–272. Zbl0609.49029
- [13] P.H. Rabinowitz and E. Stredulinsky, Mixed states for an Allen-Cahn type equation. Commun. Pure Appl. Math. 56 (2003) 1078–1134. Zbl1274.35122
- [14] P.H. Rabinowitz and E. Stredulinsky, Mixed states for an Allen-Cahn type equation, II. Calc. Var. Partial Differ. Equ. 21 (2004) 157–207. Zbl1161.35397
- [15] P.H. Rabinowitz, Heteroclinic for reversible Hamiltonian system. Ergod. Th. Dyn. Sys. 14 (1994) 817–829. Zbl0818.34025
- [16] P.H. Rabinowitz, Solutions of heteroclinic type for some classes of semilinear elliptic partial differential equations. J. Math. Sci. Univ. Tokio 1 (1994) 525–550. Zbl0823.35062
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.