On minimal laminations of the torus
Annales de l'I.H.P. Analyse non linéaire (1989)
- Volume: 6, Issue: 2, page 95-138
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBangert, V.. "On minimal laminations of the torus." Annales de l'I.H.P. Analyse non linéaire 6.2 (1989): 95-138. <http://eudml.org/doc/78172>.
@article{Bangert1989,
author = {Bangert, V.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {-periodic variational problem; minimizing solutions; laminations},
language = {eng},
number = {2},
pages = {95-138},
publisher = {Gauthier-Villars},
title = {On minimal laminations of the torus},
url = {http://eudml.org/doc/78172},
volume = {6},
year = {1989},
}
TY - JOUR
AU - Bangert, V.
TI - On minimal laminations of the torus
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1989
PB - Gauthier-Villars
VL - 6
IS - 2
SP - 95
EP - 138
LA - eng
KW - -periodic variational problem; minimizing solutions; laminations
UR - http://eudml.org/doc/78172
ER -
References
top- [1] S. Aubry and P.Y. Le Daeron, The discrete Frenkel-Kontorova Model and Its Extensions I. Exact Results for the Ground States, Physica, 8 D, 1983, pp. 381-422. Zbl1237.37059MR719634
- [2] V. Bangert, Mather Sets for Twist Maps and Geodesics on Tori, Dynamics Reported, Vol. 1, U. KIRCHGRABER and H. O. WALTHER éds., pp. 1-56. Stuttgart-Chichester, B. G. Teubner-John Wiley, 1988. Zbl0664.53021MR945963
- [3] V. Bangert, A Uniqueness Theorem for Zr-periodic Variational Problems, Comment. Math. Helv., Vol. 62, 1987, pp. 511-531. Zbl0634.49018MR920054
- [4] V. Bangert, The Existence of Gaps in Minimal Foliations. Aequationes Math., Vol. 34, 1987, pp. 153-166. Zbl0645.58017MR921095
- [5] G.D. Birkhoff, Dynamical Systems, Amer. Math. Soc. Colloq. Publ., Vol.IX, New York, Amer. Math. Soc., 1927. JFM53.0732.01
- [6] J. Denzler, Mather Sets for Plane Hamiltonian Systems, Z. Angew. Math. Phys. (ZAMP), Vol. 38, 1987, pp. 791-812. Zbl0641.70014MR928585
- [7] G.A. Hedlund, Geodesies on a Two-dimensional Riemannian Manifold with Periodic Coefficients, Ann. of Math., Vol. 33, 1932, pp. 719-739. Zbl0006.32601MR1503086
- [8] O.A. Ladyzhenskaya and N.N. Ural'tseva, Linear and Quasilinear Elliptic Equations, New York-London, Academic Press, 1968. Zbl0164.13002MR244627
- [9] J.N. Mather, Existence of quasi-periodic Orbits for Twist Homeomorphisms of the Annulus, Topology, Vol. 21, 1982, pp. 457-467. Zbl0506.58032MR670747
- [10] J.N. Mather, More Denjoy Minimal Sets for Area Preserving Diffeomorphisms, Comment. Math. Helv., Vol. 60, 1985, pp. 508-557. Zbl0597.58015MR826870
- [11] M. Morse, A Fundamental Class of Geodesies on Any Closed Surface of Genus Greater than One, Trans. Amer. Math. Soc., Vol. 26, 1924, pp. 25-60. Zbl50.0466.04MR1501263JFM50.0466.04
- [12] J. Moser, Minimal Solutions of Variational Problems on a Torus, Ann. Inst. Henri-Poincaré (Analyse non linéaire), Vol. 3, 1986, pp. 229-272. Zbl0609.49029MR847308
- [13] J. Moser, A Stability Theorem for Minimal Foliations on a Torus, Ergod. Th. Dynam. Sys., Vol. 8, 1988, pp. 251-281. Zbl0632.57018MR967641
- [14] W.P. Thurston, Three Dimensional Manifolds, Kleinian Groups and Hyperbolic Geometry, Bull. (N.S.) Amer. Math. Soc., Vol. 6, 1982, pp. 357-381. Zbl0496.57005MR648524
Citations in EuDML Documents
top- Francesca Alessio, Piero Montecchiari, Entire solutions in for a class of Allen-Cahn equations
- Francesca Alessio, Piero Montecchiari, Entire solutions in for a class of Allen-Cahn equations
- P. H. Rabinowitz, E. Stredulinsky, On some results of Moser and of Bangert
- Paul H. Rabinowitz, Spatially heteroclinic solutions for a semilinear elliptic P.D.E.
- Alexander J. Zaslavski, A nonintersection property for extremals of variational problems with vector-valued functions
- Ugo Bessi, Aubry sets and the differentiability of the minimal average action in codimension one
- Rafael de la Llave, Enrico Valdinoci, A generalization of Aubry-Mather theory to partial differential equations and pseudo-differential equations
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.