Minimal solutions of variational problems on a torus

Jürgen Moser

Annales de l'I.H.P. Analyse non linéaire (1986)

  • Volume: 3, Issue: 3, page 229-272
  • ISSN: 0294-1449

How to cite

top

Moser, Jürgen. "Minimal solutions of variational problems on a torus." Annales de l'I.H.P. Analyse non linéaire 3.3 (1986): 229-272. <http://eudml.org/doc/78113>.

@article{Moser1986,
author = {Moser, Jürgen},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {variational problems on the torus; minimal solutions without selfintersections; folitations of extremals},
language = {eng},
number = {3},
pages = {229-272},
publisher = {Gauthier-Villars},
title = {Minimal solutions of variational problems on a torus},
url = {http://eudml.org/doc/78113},
volume = {3},
year = {1986},
}

TY - JOUR
AU - Moser, Jürgen
TI - Minimal solutions of variational problems on a torus
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1986
PB - Gauthier-Villars
VL - 3
IS - 3
SP - 229
EP - 272
LA - eng
KW - variational problems on the torus; minimal solutions without selfintersections; folitations of extremals
UR - http://eudml.org/doc/78113
ER -

References

top
  1. [1] M. Amann, M.G. Crandall, On Some Existence Theorems for Semi-linear Elliptic Equations, Ind. Univ. Math. Journal, t. 27, 1978, p. 779-790 (see esp. prop. 2 and its proof, p. 788-789. Zbl0391.35030MR503713
  2. [2] S. Aubry, P.Y. Le Daeron, The discrete Frenkel-Kantorova model and its extensions I. Exact results for the ground states, Physica, t. 8D, 1983, p. 381-422. Zbl1237.37059MR719634
  3. [3] V. Bangert, Mather Sets for Twist Maps and Geodesic Tori. Preprint, Bonn, 1985. Zbl0664.53021MR945963
  4. [4] E. De Giorgi, Sulla differenziabilità e l'analiticità degli integrali multipli regolari, Mem. Accad. Sci. Torino, Cl. Sci. Fis. Mat. Natur, (3), n° 3, 1957, p. 25-43. Zbl0084.31901MR93649
  5. [5] E. Di Benedetto, N.S. Trudinger, Harnack Inequality for Quasi-Minima of Variational Integrals, Annales de l'Inst. H. Poincaré, Analyse Non-linéaire, t. 1, 1984, p. 295-308. Zbl0565.35012MR778976
  6. [6] G. Eisen, Ueber die Regularität schwacher Lösungen von Variationsproblemen mit Hindernissen und Integralbedingungen, preprint No. 512, Sonderforschungsbereich 72, Universität Bonn, 1982. 
  7. [7] M. Giaquinta, E. Giusti, Quasi-Minima, Ann. d'Inst. Henri Poincaré, Analyse non lin., t. 1, 1984, p. 79-107. Zbl0541.49008MR778969
  8. [8] M. Giaquinta, E. Giusti, On the regularity of the minima of variational integrals, Acta math., t. 148, 1982, p. 31-46. Zbl0494.49031MR666107
  9. [9] M. Giaquinta, E. Giusti, Differentiability of Minima of Non-Differentiable Functionals, Inv. math., t. 72, 1983, p. 285-298. Zbl0513.49003MR700772
  10. [10] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Ann. Math. Studies, t. 105, Princeton, N. J., 1983. Zbl0516.49003MR717034
  11. [11] M. Giaquinta, An Introduction to the Regularity Theory for Nonlinear Elliptic Systems, Lecture Notes at the ETH Zürich, May 1984. 
  12. [12] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations ofSecond Order, 2nd ed., Springer, 1983. Zbl0562.35001MR737190
  13. [13] G.A. Hedlund, Geodesics on a two-dimensional Riemannian manifold with periodic coefficients, Ann. Math., t. 33, 1932, p. 719-739. Zbl0006.32601MR1503086
  14. [14] A. Katok, Some remarks on Birkhoff and Mather twist theorems, Ergodic Theory and Dynamical Systems, t. 2, 1982, p. 185-194. Zbl0521.58048MR693974
  15. [15] O.A. Ladyzhenskaya, N.N. Uraltseva, Linear and Quasilinear Elliptic Equations, Acad. Press, New York and London, 1968. Zbl0164.13002MR244627
  16. [16] J.N. Mather, Existence of quasi-periodic orbits for twist homeomorphisms of the annulus, Topology, t. 21, 1982, p. 457-467. Zbl0506.58032MR670747
  17. [17] C.B. Morrey, Multiple Integrals in the Calculus of Variations, Springer-Verlag, 1966. Zbl0142.38701MR202511
  18. [18] M. Morse, A fundamental class of geodesics on any closed surface of genus greater than one. Trans. Am. Math. Soc., t. 26, 1924, p. 25-60. Zbl50.0466.04MR1501263JFM50.0466.04
  19. [19] J. MOSER, On Harnack's Theorem for Elliptic Differential Equations, Comm. Pure Appl. Math., t. 14, 1961, p. 577-591. Zbl0111.09302MR159138
  20. [20] J. Moser, Monotone Twist Mappings and the Calculus of Variations, to appear in Dynamical Systems and Ergodic Theory, 1986. Zbl0619.49020MR863203
  21. [21] J. Moser, Breakdown of stability, to appear in SIAM Review, 1986. 
  22. [22] I.C. Percival, Variational principles for invariant tori and Cantori, A. I. P. Conference Proceedings No. 57, ed. M. Month, 1980, p. 1-17. MR624989
  23. [23] I.C. Percival, A variational principle for invariant tori of fixed frequency, Journ. Phys. A., Math. Gen., t. 12, 1979, L 57-60. Zbl0394.70018MR524167
  24. [24] M. Protter, H. Weinberger, Maximum Principles in Differential Equations, Prentice Hall, 1967. Zbl0153.13602MR219861
  25. [25] B. Solomon, On foliations of Rn+1 by minimal hypersurfaces, preprint from Indiana University, Oct. 1984, to appear in Comm. Math. Helv., 1986. Zbl0601.53025MR847521
  26. [26] N.S. Trudinger, On Harnack Type Inequalities and their Application to Quasilinear Elliptic Equations. Comm. Pure Appl. Math., t. 20, 1967, p. 721–747. Zbl0153.42703MR226198

Citations in EuDML Documents

top
  1. Francesca Alessio, Piero Montecchiari, Entire solutions in 2 for a class of Allen-Cahn equations
  2. Francesca Alessio, Piero Montecchiari, Entire solutions in 2 for a class of Allen-Cahn equations
  3. P. H. Rabinowitz, E. Stredulinsky, On some results of Moser and of Bangert
  4. Alexander J. Zaslavski, Structure of approximate solutions of variational problems with extended-valued convex integrands
  5. V. Bangert, On minimal laminations of the torus
  6. Alexander J. Zaslavski, Structure of approximate solutions of variational problems with extended-valued convex integrands
  7. Paul H. Rabinowitz, Spatially heteroclinic solutions for a semilinear elliptic P.D.E.
  8. Alexander J. Zaslavski, A nonintersection property for extremals of variational problems with vector-valued functions
  9. Ugo Bessi, Aubry sets and the differentiability of the minimal average action in codimension one
  10. Rafael de la Llave, Enrico Valdinoci, A generalization of Aubry-Mather theory to partial differential equations and pseudo-differential equations

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.