Critical points of Ambrosio-Tortorelli converge to critical points of Mumford-Shah in the one-dimensional Dirichlet case
Gilles A. Francfort; Nam Q. Le; Sylvia Serfaty
ESAIM: Control, Optimisation and Calculus of Variations (2009)
- Volume: 15, Issue: 3, page 576-598
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topFrancfort, Gilles A., Le, Nam Q., and Serfaty, Sylvia. "Critical points of Ambrosio-Tortorelli converge to critical points of Mumford-Shah in the one-dimensional Dirichlet case." ESAIM: Control, Optimisation and Calculus of Variations 15.3 (2009): 576-598. <http://eudml.org/doc/245594>.
@article{Francfort2009,
abstract = {Critical points of a variant of the Ambrosio-Tortorelli functional, for which non-zero Dirichlet boundary conditions replace the fidelity term, are investigated. They are shown to converge to particular critical points of the corresponding variant of the Mumford-Shah functional; those exhibit many symmetries. That Dirichlet variant is the natural functional when addressing a problem of brittle fracture in an elastic material.},
author = {Francfort, Gilles A., Le, Nam Q., Serfaty, Sylvia},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Mumford-Shah functional; Ambrosio-Tortorelli functional; gamma-convergence; critical points; brittle fracture; -convergence},
language = {eng},
number = {3},
pages = {576-598},
publisher = {EDP-Sciences},
title = {Critical points of Ambrosio-Tortorelli converge to critical points of Mumford-Shah in the one-dimensional Dirichlet case},
url = {http://eudml.org/doc/245594},
volume = {15},
year = {2009},
}
TY - JOUR
AU - Francfort, Gilles A.
AU - Le, Nam Q.
AU - Serfaty, Sylvia
TI - Critical points of Ambrosio-Tortorelli converge to critical points of Mumford-Shah in the one-dimensional Dirichlet case
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2009
PB - EDP-Sciences
VL - 15
IS - 3
SP - 576
EP - 598
AB - Critical points of a variant of the Ambrosio-Tortorelli functional, for which non-zero Dirichlet boundary conditions replace the fidelity term, are investigated. They are shown to converge to particular critical points of the corresponding variant of the Mumford-Shah functional; those exhibit many symmetries. That Dirichlet variant is the natural functional when addressing a problem of brittle fracture in an elastic material.
LA - eng
KW - Mumford-Shah functional; Ambrosio-Tortorelli functional; gamma-convergence; critical points; brittle fracture; -convergence
UR - http://eudml.org/doc/245594
ER -
References
top- [1] L. Ambrosio, Existence theory for a new class of variational problems. Arch. Ration. Mech. Anal. 111 (1990) 291–322. Zbl0711.49064MR1068374
- [2] L. Ambrosio and V.M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via -convergence. Comm. Pure Appl. Math. 43 (1990) 999–1036. Zbl0722.49020MR1075076
- [3] L. Ambrosio and V.M. Tortorelli, On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. B (7) 6 (1992) 105–123. Zbl0776.49029MR1164940
- [4] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press (2000). Zbl0957.49001MR1857292
- [5] F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau vortices, Progress in Nonlinear Differential Equations and their Applications 13. Birkhäuser Boston Inc., Boston, MA (1994). Zbl0802.35142MR1269538
- [6] B. Bourdin, Numerical implementation of the variational formulation of brittle fracture. Interfaces Free Bound. 9 (2007) 411–430. Zbl1130.74040MR2341850
- [7] A. Braides, -convergence for Beginners, Oxford Lecture Series in Mathematics and its Applications 22. Oxford University Press (2002). Zbl1198.49001MR1968440
- [8] E. De Giorgi, M. Carriero and A. Leaci, Existence theorem for a minimum problem with free discontinuity set. Arch. Ration. Mech. Anal. 108 (1989) 195–218. Zbl0682.49002MR1012174
- [9] L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. CRC Press, Boca Raton, FL (1992). Zbl0804.28001MR1158660
- [10] G.A. Francfort and J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46 (1998) 1319–1342. Zbl0966.74060MR1633984
- [11] J.E. Hutchinson and Y. Tonegawa, Convergence of phase interfaces in the van der Waals-Cahn-Hilliard theory. Calc. Var. Partial Differential Equations 10 (2000) 49–84. Zbl1070.49026MR1803974
- [12] L. Modica and S. Mortola, Il limite nella -convergenza di una famiglia di funzionali ellittici. Boll. Un. Mat. Ital. A (5) 14 (1977) 526–529. Zbl0364.49006MR473971
- [13] D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. XLII (1989) 577–685. Zbl0691.49036MR997568
- [14] P.J. Olver, Applications of Lie groups to differential equations, Graduate Texts in Mathematics 107. Springer-Verlag, New York (1986). Zbl0588.22001MR836734
- [15] E. Sandier and S. Serfaty, Vortices in the magnetic Ginzburg-Landau model, Progress in Nonlinear Differential Equations and their Applications 70. Birkhäuser Boston Inc., Boston, MA (2007). Zbl1112.35002MR2279839
- [16] Y. Tonegawa, Phase field model with a variable chemical potential. Proc. Roy. Soc. Edinburgh Sect. A 132 (2002) 993–1019. Zbl1013.35070MR1926927
- [17] Y. Tonegawa, A diffused interface whose chemical potential lies in a Sobolev space. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4 (2005) 487–510. Zbl1170.35416MR2185866
- [18] T. Wittman, Lost in the supermarket: decoding blurry barcodes. SIAM News 37 September (2004).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.