Smooth approximation in weighted Sobolev spaces
Commentationes Mathematicae Universitatis Carolinae (1997)
- Volume: 38, Issue: 1, page 29-35
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKilpeläinen, Tero. "Smooth approximation in weighted Sobolev spaces." Commentationes Mathematicae Universitatis Carolinae 38.1 (1997): 29-35. <http://eudml.org/doc/248050>.
@article{Kilpeläinen1997,
abstract = {We give necessary and sufficient conditions for the equality $H=W$ in weighted Sobolev spaces. We also establish a Rellich-Kondrachov compactness theorem as well as a Lusin type approximation by Lipschitz functions in weighted Sobolev spaces.},
author = {Kilpeläinen, Tero},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {weighted Sobolev spaces; Poincaré inequality; Sobolev space; Poincaré inequality; doubling weight; compact imbedding},
language = {eng},
number = {1},
pages = {29-35},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Smooth approximation in weighted Sobolev spaces},
url = {http://eudml.org/doc/248050},
volume = {38},
year = {1997},
}
TY - JOUR
AU - Kilpeläinen, Tero
TI - Smooth approximation in weighted Sobolev spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1997
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 38
IS - 1
SP - 29
EP - 35
AB - We give necessary and sufficient conditions for the equality $H=W$ in weighted Sobolev spaces. We also establish a Rellich-Kondrachov compactness theorem as well as a Lusin type approximation by Lipschitz functions in weighted Sobolev spaces.
LA - eng
KW - weighted Sobolev spaces; Poincaré inequality; Sobolev space; Poincaré inequality; doubling weight; compact imbedding
UR - http://eudml.org/doc/248050
ER -
References
top- Chua S.-K., Extension theorems on weighted Sobolev spaces, Indiana Univ. Math. J. (1992), 41 1027-1076. (1992) Zbl0767.46025MR1206339
- Deny J., Lions J.L., Les espaces du type de Beppo Levi, Ann. Inst. Fourier 5 (1953-54), 305-370. (1953-54) Zbl0065.09903MR0074787
- Evans L.C., Gariepy R.R., Measure Theory and Fine Properties of Functions, CRC Press Boca Raton (1992). (1992) Zbl0804.28001MR1158660
- Fabes E.B., Kenig C.E., Serapioni R.P., The local regularity of solutions of degenerate elliptic equations, Comm. P.D.E. 7 (1982), 77-116. (1982) Zbl0498.35042MR0643158
- Hajłasz P., Sobolev spaces on an arbitrary metric space, Potential Analysis 5 (1996), 403-415. (1996) MR1401074
- Hajłasz P., Koskela P., Sobolev meets Poincaré, C.R. Acad. Sci. Paris Sér. I (1995), 320 1211-1215. (1995) MR1336257
- Heinonen J., Kilpeläinen T., Martio O., Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford University Press Oxford (1993). (1993) MR1207810
- Heinonen J., Koskela P., Weighted Sobolev and Poincaré inequalities and quasiregular mappings of polynomial type, Math. Scand. 77 (1995), 251-271. (1995) Zbl0860.30018MR1379269
- Kilpeläinen T., Weighted Sobolev spaces and capacity, Ann. Acad. Sci. Fenn. Ser. A I. Math. 19 (1994), 95-113. (1994) MR1246890
- Kufner A., Weighted Sobolev Spaces, Wiley New York (1985). (1985) Zbl0579.35021MR0802206
- Kufner A., Opic B., How to define reasonably weighted Sobolev spaces, Comment. Math. Univ. Carol. 25 (1984), 537-554. (1984) Zbl0557.46025MR0775568
- Liu F.-C., A Lusin type property of Sobolev functions, Indiana Univ. Math. J. 26 (1977), 645-651. (1977) MR0450488
- Meyers N., Serrin J., , Proc. Nat. Acad, Sci. USA 51 (1964), 1055-1056. (1964) Zbl0123.30501MR0164252
- Stein E.M., Harmonic Analysis, Princeton University Press Princeton, New Jersey (1993). (1993) Zbl0821.42001MR1232192
- Turesson B.O., Nonlinear potential theory and weighted Sobolev spaces, Thesis, University of Linköping, 1995. Zbl0949.31006MR1371571
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.