*-sturmian words and complexity
Izumi Nakashima; Jun-Ichi Tamura; Shin-Ichi Yasutomi
Journal de théorie des nombres de Bordeaux (2003)
- Volume: 15, Issue: 3, page 767-804
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topNakashima, Izumi, Tamura, Jun-Ichi, and Yasutomi, Shin-Ichi. "*-sturmian words and complexity." Journal de théorie des nombres de Bordeaux 15.3 (2003): 767-804. <http://eudml.org/doc/249073>.
@article{Nakashima2003,
abstract = {We give analogs of the complexity $p(n)$ and of Sturmian words which are called respectively the $\ast $-complexity $p_\ast (n)$ and $\ast $-Sturmian words. We show that the class of $\ast $-Sturmian words coincides with the class of words satisfying $p_\ast (n) \le n + 1$, and we determine the structure of $\ast $-Sturmian words. For a class of words satisfying $p_\ast (n) = n + 1$, we give a general formula and an upper bound for $p(n)$. Using this general formula, we give explicit formulae for $p(n)$ for some words belonging to this class. In general, $p(n)$ can take large values, namely, $p(n) \ge 2^\{n^\{1- \epsilon \}\}$ holds for some $\ast $-Sturmian words; however the topological entropy of any $\ast $-Sturmian word is zero.},
author = {Nakashima, Izumi, Tamura, Jun-Ichi, Yasutomi, Shin-Ichi},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Sturmian words; complexity; approximation of rational lines; infinite occurrences},
language = {eng},
number = {3},
pages = {767-804},
publisher = {Université Bordeaux I},
title = {*-sturmian words and complexity},
url = {http://eudml.org/doc/249073},
volume = {15},
year = {2003},
}
TY - JOUR
AU - Nakashima, Izumi
AU - Tamura, Jun-Ichi
AU - Yasutomi, Shin-Ichi
TI - *-sturmian words and complexity
JO - Journal de théorie des nombres de Bordeaux
PY - 2003
PB - Université Bordeaux I
VL - 15
IS - 3
SP - 767
EP - 804
AB - We give analogs of the complexity $p(n)$ and of Sturmian words which are called respectively the $\ast $-complexity $p_\ast (n)$ and $\ast $-Sturmian words. We show that the class of $\ast $-Sturmian words coincides with the class of words satisfying $p_\ast (n) \le n + 1$, and we determine the structure of $\ast $-Sturmian words. For a class of words satisfying $p_\ast (n) = n + 1$, we give a general formula and an upper bound for $p(n)$. Using this general formula, we give explicit formulae for $p(n)$ for some words belonging to this class. In general, $p(n)$ can take large values, namely, $p(n) \ge 2^{n^{1- \epsilon }}$ holds for some $\ast $-Sturmian words; however the topological entropy of any $\ast $-Sturmian word is zero.
LA - eng
KW - Sturmian words; complexity; approximation of rational lines; infinite occurrences
UR - http://eudml.org/doc/249073
ER -
References
top- [1] P. Arnoux, C. Mauduit, I. Shiokawa, J.-I. Tamura, Complexity of sequences defined by billiards in the cube. Bull. Soc. Math. France122 (1994), 1-12. Zbl0791.58034MR1259106
- [2] P. Arnoux, G. Rauzy, Représentation géométrique de suites de complexité 2n + 1. Bull. Soc. Math. France119 (1991), 199-215. Zbl0789.28011MR1116845
- [3] Y. Baryshnikov, Complexity of trajectories in rectangular billiards. Comm. Math. Phys.174 (1995), 43-56. Zbl0839.11006MR1372799
- [4] T.C. Brown, Descriptions of the characteristic sequence of an irrational. Canad. Math. Bull.36 (1993), 15-21. Zbl0804.11021MR1205889
- [5] E.M. Coven, G.A. Hedlund, Sequences with minimal block growth. Math. Systems Theory7 (1973), 138-153. Zbl0256.54028MR322838
- [6] S. Ferenczi, Les transformations de Chacon: combinatoire, structure géométrique, lien avec les systèmes de complexité 2n + 1. Bull. Soc. Math. France123 (1995), 271-292. Zbl0855.28008MR1340291
- [7] S. Ito, S.-I. Yasutomi, On continued fraction, substitutions and characteristic sequences [nx + y] — [(n - 1)x + y]. Japan. J. Math.16 (1990), 287-306. Zbl0721.11009MR1091163
- [8] W.F. Lunnon, P.A.B. Pleasants, Characterization of two-distance sequences. J. Austral. Math. Soc. (Ser. A) 53 (1992), 198-218. Zbl0759.11005MR1175712
- [9] M. Morse, G.A. Hedlund, Symbolic dynamics. Amer. J. Math.60 (1938), 815-866. Zbl0019.33502MR1507944JFM64.0798.04
- [10] M. Morse, G.A. Hedlund, Symbolic dynamics II. Sturmian trajectories. Amer. J. Math.62 (1940), 1-42. Zbl0022.34003MR745JFM66.0188.03
- [11] I. Nakashima, J.-I. Tamura, S.-I. Yasutomi, Modified complexity and *-Sturmian word. Proc. Japan Acad. (Ser. A) Math. Sci.75 (1999), 26-28. Zbl0928.11012MR1700732
- [12] G. Rote, Sequences with subword complexity 2n. J. Number Theory.46 (1994), 196-213. Zbl0804.11023MR1269252
- [13] S.-I. Yasutomi, The continued fraction expansion of α with μ(α) = 3. Acta Arith.84 (1998), 337-374. Zbl0967.11024
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.