Γ-convergence of functionals on divergence-free fields
ESAIM: Control, Optimisation and Calculus of Variations (2007)
- Volume: 13, Issue: 4, page 809-828
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topAnsini, Nadia, and Garroni, Adriana. "Γ-convergence of functionals on divergence-free fields." ESAIM: Control, Optimisation and Calculus of Variations 13.4 (2007): 809-828. <http://eudml.org/doc/250011>.
@article{Ansini2007,
abstract = {
We study the stability of a sequence of integral
functionals on divergence-free matrix valued fields following the direct
methods of Γ-convergence. We prove that the Γ-limit
is an integral functional on divergence-free matrix valued fields.
Moreover, we show that the Γ-limit is also stable under
volume constraint and various type of boundary conditions.
},
author = {Ansini, Nadia, Garroni, Adriana},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {$\{\cal A\}$-quasiconvexity; divergence-free fields; Γ-convergence; homogenization; -convergence; functionals on divergence free matrix-valued functions; -quasiconvexity; volume constraints},
language = {eng},
month = {9},
number = {4},
pages = {809-828},
publisher = {EDP Sciences},
title = {Γ-convergence of functionals on divergence-free fields},
url = {http://eudml.org/doc/250011},
volume = {13},
year = {2007},
}
TY - JOUR
AU - Ansini, Nadia
AU - Garroni, Adriana
TI - Γ-convergence of functionals on divergence-free fields
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2007/9//
PB - EDP Sciences
VL - 13
IS - 4
SP - 809
EP - 828
AB -
We study the stability of a sequence of integral
functionals on divergence-free matrix valued fields following the direct
methods of Γ-convergence. We prove that the Γ-limit
is an integral functional on divergence-free matrix valued fields.
Moreover, we show that the Γ-limit is also stable under
volume constraint and various type of boundary conditions.
LA - eng
KW - ${\cal A}$-quasiconvexity; divergence-free fields; Γ-convergence; homogenization; -convergence; functionals on divergence free matrix-valued functions; -quasiconvexity; volume constraints
UR - http://eudml.org/doc/250011
ER -
References
top- E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Rational Mech. Anal.86 (1984) 125–145.
- R.A. Adams, Sobolev spaces. Academic Press, New York (1975).
- A. Braides, Γ-convergence for Beginners. Oxford University Press, Oxford (2002).
- A. Braides and A. Defranceschi, Homogenization of Multiple Integrals. Oxford University Press, Oxford (1998).
- A. Braides, I. Fonseca and G. Leoni, A-Quasiconvexity: Relaxation and Homogenization. ESAIM: COCV5 (2000) 539–577.
- G. Dal Maso, An Introduction to Γ -convergence. Birkhäuser, Boston (1993).
- I. Fonseca and S. Müller, A-Quasiconvexity, lower semicontinuity and Young measures. SIAM J. Math. Anal.30 (1999) 1355–1390.
- I. Fonseca, S. Müller and P. Pedregal, Analysis of concentration and oscillation effects generated by gradient. SIAM J. Math. Anal.29 (1998) 736–756.
- F. Murat, Compacité par compensation : condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant. Ann. Scuola Norm. Sup. Pisa Cl. Sci.8 (1981) 68–102.
- P. Pedregal, Parametrized measures and variational principles. Birkhäuser, Baston (1997).
- P. Suquet, Overall potentials and extremal surfaces of power law or ideally plastic composites. J. Mech. Phys. Solids41 (1993) 981–1002.
- D.R.S. Talbot and J.R. Willis, Upper and lower bounds for the overall properties of a nonlinear composite dielectric. I. Random microgeometry. Proc. Roy. Soc. London A447 (1994) 365–384.
- D.R.S. Talbot and J.R. Willis, Upper and lower bounds for the overall properties of a nonlinear composite dielectric. II. Periodic microgeometry. Proc. Roy. Soc. London A447 (1994) 385–396.
- L. Tartar, Compensated compactness and applications to partial differential equations. Nonlinerar Analysis and Mechanics: Heriot-Watt Symposium, R. Knops Ed., Longman, Harlow. Pitman Res. Notes Math. Ser.39 (1979) 136–212.
- R. Temam, Navier-Stokes Equations. Elsevier Science Publishers, Amsterdam (1977).
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.