Pseudo-boundaries and pseudo-interiors for topological convexities

M. Van de Vel

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1983

Abstract

top
CONTENTS0. Introduction......... .............................................................51. Topological convexity structures.......................................62. Half-spaces and related results......................................123. Pseudo-boundaries........................................................254. The Krein-Milman theorem.............................................335. Pseudo-interiority...........................................................406. The existence of pseudo-interior points.........................507. Identification of Z-set and Hilbert cubes.........................62References........................................................................70Subject index.....................................................................72ERRATA Page, line: 33₁₃ For: C Read: O Page, line: 69⁸ For: H i ( X ) Read: H₁(X) Page, line: 72₄ For: i(C) Read: ∂(C) Page, line: 72₄ For: i X ( C ) Read: X ( C ) Page, line: 72₄ For: i(X,C) Read: ∂(X,C) Page, line: 72₄ For: 5.1 Read: 3.1

How to cite

top

M. Van de Vel. Pseudo-boundaries and pseudo-interiors for topological convexities. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1983. <http://eudml.org/doc/268634>.

@book{M1983,
abstract = {CONTENTS0. Introduction......... .............................................................51. Topological convexity structures.......................................62. Half-spaces and related results......................................123. Pseudo-boundaries........................................................254. The Krein-Milman theorem.............................................335. Pseudo-interiority...........................................................406. The existence of pseudo-interior points.........................507. Identification of Z-set and Hilbert cubes.........................62References........................................................................70Subject index.....................................................................72ERRATA Page, line: 33₁₃ For: C Read: O Page, line: 69⁸ For: $H_i(X)$ Read: H₁(X) Page, line: 72₄ For: i(C) Read: ∂(C) Page, line: 72₄ For: $i_X(C)$ Read: $∂_X(C)$ Page, line: 72₄ For: i(X,C) Read: ∂(X,C) Page, line: 72₄ For: 5.1 Read: 3.1},
author = {M. Van de Vel},
keywords = {convexity structure; convex hull operator; Hahn-Banach theorem; Krein- Milman theorem},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Pseudo-boundaries and pseudo-interiors for topological convexities},
url = {http://eudml.org/doc/268634},
year = {1983},
}

TY - BOOK
AU - M. Van de Vel
TI - Pseudo-boundaries and pseudo-interiors for topological convexities
PY - 1983
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTS0. Introduction......... .............................................................51. Topological convexity structures.......................................62. Half-spaces and related results......................................123. Pseudo-boundaries........................................................254. The Krein-Milman theorem.............................................335. Pseudo-interiority...........................................................406. The existence of pseudo-interior points.........................507. Identification of Z-set and Hilbert cubes.........................62References........................................................................70Subject index.....................................................................72ERRATA Page, line: 33₁₃ For: C Read: O Page, line: 69⁸ For: $H_i(X)$ Read: H₁(X) Page, line: 72₄ For: i(C) Read: ∂(C) Page, line: 72₄ For: $i_X(C)$ Read: $∂_X(C)$ Page, line: 72₄ For: i(X,C) Read: ∂(X,C) Page, line: 72₄ For: 5.1 Read: 3.1
LA - eng
KW - convexity structure; convex hull operator; Hahn-Banach theorem; Krein- Milman theorem
UR - http://eudml.org/doc/268634
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.