The trace formula for coverings of connected reductive groups. II. Local harmonic analysis

Wen-Wei Li

Annales scientifiques de l'École Normale Supérieure (2012)

  • Volume: 45, Issue: 5, page 787-859
  • ISSN: 0012-9593

Abstract

top
We establish some results in local harmonic analysis which are necessary for Arthur’s invariant trace formula for coverings of connected reductive groups. More precisely, for local coverings we will study (1) the Plancherel formula and its preparations, (2) the normalization of intertwining operators subject to Arthur’s conditions, (3) the local behavior of characters of admissible representations in the nonarchimedean case, and (4) the genuine part of the invariant local trace formula. As a byproduct of the invariant local trace formula, we deduce the density of tempered characters for coverings.

How to cite

top

Li, Wen-Wei. "La formule des traces pour les revêtements de groupes réductifs connexes. II. Analyse harmonique locale." Annales scientifiques de l'École Normale Supérieure 45.5 (2012): 787-859. <http://eudml.org/doc/272199>.

@article{Li2012,
abstract = {On établit des résultats de l’analyse harmonique locale nécessaires pour la formule des traces invariante d’Arthur pour les revêtements de groupes réductifs connexes. Plus précisément, on démontre pour les revêtements locaux (1) la formule de Plancherel et des préparatifs reliés, (2) la normalisation des opérateurs d’entrelacement soumise aux conditions d’Arthur, (3) le comportement local de caractères de représentations admissibles dans le cas non archimédien, et (4) la partie spécifique de la formule des traces locale invariante. Comme un sous-produit de la démonstration de la formule des traces locale invariante, on obtient aussi la densité de caractères tempérés pour les revêtements.},
author = {Li, Wen-Wei},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {formule des traces d’Arthur-Selberg; formule des traces locale; revêtements de groupes},
language = {fre},
number = {5},
pages = {787-859},
publisher = {Société mathématique de France},
title = {La formule des traces pour les revêtements de groupes réductifs connexes. II. Analyse harmonique locale},
url = {http://eudml.org/doc/272199},
volume = {45},
year = {2012},
}

TY - JOUR
AU - Li, Wen-Wei
TI - La formule des traces pour les revêtements de groupes réductifs connexes. II. Analyse harmonique locale
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2012
PB - Société mathématique de France
VL - 45
IS - 5
SP - 787
EP - 859
AB - On établit des résultats de l’analyse harmonique locale nécessaires pour la formule des traces invariante d’Arthur pour les revêtements de groupes réductifs connexes. Plus précisément, on démontre pour les revêtements locaux (1) la formule de Plancherel et des préparatifs reliés, (2) la normalisation des opérateurs d’entrelacement soumise aux conditions d’Arthur, (3) le comportement local de caractères de représentations admissibles dans le cas non archimédien, et (4) la partie spécifique de la formule des traces locale invariante. Comme un sous-produit de la démonstration de la formule des traces locale invariante, on obtient aussi la densité de caractères tempérés pour les revêtements.
LA - fre
KW - formule des traces d’Arthur-Selberg; formule des traces locale; revêtements de groupes
UR - http://eudml.org/doc/272199
ER -

References

top
  1. [1] J. Adams, D. Barbasch, A. Paul, P. Trapa & D. A. J. Vogan, Unitary Shimura correspondences for split real groups, J. Amer. Math. Soc.20 (2007), 701–751. Zbl1114.22009MR2291917
  2. [2] J. D. Adler & S. DeBacker, Some applications of Bruhat-Tits theory to harmonic analysis on the Lie algebra of a reductive p -adic group, Michigan Math. J.50 (2002), 263–286. Zbl1018.22013MR1914065
  3. [3] J. Arthur, A theorem on the Schwartz space of a reductive Lie group, Proc. Nat. Acad. Sci. U.S.A.72 (1975), 4718–4719. Zbl0311.43010MR460539
  4. [4] J. Arthur, The trace formula in invariant form, Ann. of Math.114 (1981), 1–74. Zbl0495.22006MR625344
  5. [5] J. Arthur, The invariant trace formula. I. Local theory, J. Amer. Math. Soc. 1 (1988), 323–383. Zbl0682.10021MR928262
  6. [6] J. Arthur, The invariant trace formula. II. Global theory, J. Amer. Math. Soc. 1 (1988), 501–554. Zbl0667.10019MR939691
  7. [7] J. Arthur, Harmonic analysis of tempered distributions on semisimple Lie groups of real rank one, in Representation theory and harmonic analysis on semisimple Lie groups, Math. Surveys Monogr. 31, Amer. Math. Soc., 1989, Dissertation, Yale University, New Haven, CT, 1970, 13–100. Zbl0762.22007MR1011896
  8. [8] J. Arthur, Intertwining operators and residues. I. Weighted characters, J. Funct. Anal. 84 (1989), 19–84. Zbl0679.22011MR999488
  9. [9] J. Arthur, A local trace formula, Publ. Math. I.H.É.S. 73 (1991), 5–96. Zbl0741.22013MR1114210
  10. [10] J. Arthur, On elliptic tempered characters, Acta Math.171 (1993), 73–138. Zbl0822.22011MR1237898
  11. [11] J. Arthur, On the Fourier transforms of weighted orbital integrals, J. reine angew. Math. 452 (1994), 163–217. Zbl0795.43006MR1282200
  12. [12] J. Arthur, The trace Paley-Wiener theorem for Schwartz functions, in Representation theory and analysis on homogeneous spaces (New Brunswick, NJ, 1993), Contemp. Math. 177, Amer. Math. Soc., 1994, 171–180. Zbl0854.22011MR1303605
  13. [13] J. Arthur, Canonical normalization of weighted characters and a transfer conjecture, C. R. Math. Acad. Sci. Soc. R. Can.20 (1998), 33–52. Zbl0906.11021MR1623485
  14. [14] J. Arthur, A stable trace formula. III. Proof of the main theorems, Ann. of Math. 158 (2003), 769–873. Zbl1051.11027MR2031854
  15. [15] I. N. Bernšteĭn & A. V. Zelevinskiĭ, Representations of the group G L ( n , F ) , where F is a local non-Archimedean field, Uspehi Mat. Nauk31 (1976), 5–70. Zbl0342.43017MR425030
  16. [16] I. N. Bernstein & A. V. Zelevinsky, Induced representations of reductive 𝔭 -adic groups. I, Ann. Sci. École Norm. Sup. 10 (1977), 441–472. Zbl0412.22015MR579172
  17. [17] A. Bouaziz, Intégrales orbitales sur les algèbres de Lie réductives, Invent. Math.115 (1994), 163–207. Zbl0814.22005MR1248081
  18. [18] A. Bouaziz, Intégrales orbitales sur les groupes de Lie réductifs, Ann. Sci. École Norm. Sup.27 (1994), 573–609. Zbl0832.22017MR1296557
  19. [19] J.-L. Brylinski & P. Deligne, Central extensions of reductive groups by 𝐊 2 , Publ. Math. I.H.É.S. 94 (2001), 5–85. Zbl1093.20027MR1896177
  20. [20] L. Clozel, Characters of nonconnected, reductive p -adic groups, Canad. J. Math.39 (1987), 149–167. Zbl0629.22008MR889110
  21. [21] L. Clozel, J.-P. Labesse & R. Langlands, Morning seminar on the trace formula, Institute for Advanced Study, 1984, lecture notes. 
  22. [22] M. Hanzer & G. Muić, Parabolic induction and Jacquet functors for metaplectic groups, J. Algebra323 (2010), 241–260. Zbl1185.22013MR2564837
  23. [23] Harish-Chandra, Discrete series for semisimple Lie groups. II. Explicit determination of the characters, Acta Math. 116 (1966), 1–111. Zbl0199.20102MR219666
  24. [24] Harish-Chandra, Harmonic analysis on real reductive groups. III. The Maass-Selberg relations and the Plancherel formula, Ann. of Math. 104 (1976), 117–201. Zbl0331.22007MR439994
  25. [25] Harish-Chandra, Admissible invariant distributions on reductive p -adic groups, University Lecture Series 16, Amer. Math. Soc., 1999. Zbl0928.22017MR1702257
  26. [26] D. Kazhdan, Cuspidal geometry of p -adic groups, J. Analyse Math.47 (1986), 1–36. Zbl0634.22009MR874042
  27. [27] D. A. Kazhdan & S. J. Patterson, Metaplectic forms, Publ. Math. I.H.É.S. 59 (1984), 35–142. Zbl0559.10026MR743816
  28. [28] A. W. Knapp & D. A. J. Vogan, Cohomological induction and unitary representations, Princeton Mathematical Series 45, Princeton Univ. Press, 1995. Zbl0863.22011MR1330919
  29. [29] A. W. Knapp & G. Zuckerman, Classification theorems for representations of semisimple Lie groups, in Non-commutative harmonic analysis (Actes Colloq., Marseille-Luminy, 1976), 587, Springer, 1977, 138–159. Zbl0353.22011MR476923
  30. [30] T. Konno, A note on the Langlands classification and irreducibility of induced representations of p -adic groups, Kyushu J. Math.57 (2003), 383–409. Zbl1054.22018MR2050093
  31. [31] W.-W. Li, La formule des traces pour les revêtements de groupes réductifs connexes. I. Le développement géométrique fin, preprint arXiv:1004.4011, 2010. Zbl1330.11038
  32. [32] P. J. McNamara, Metaplectic Whittaker functions and crystal bases, Duke Math. J.156 (2011), 1–31. Zbl1217.22015MR2746386
  33. [33] P. Mezo, Comparisons of general linear groups and their metaplectic coverings. II, Represent. Theory 5 (2001), 524–580. Zbl1069.11019MR1870602
  34. [34] A. J. Silberger, The Knapp-Stein dimension theorem for p -adic groups, Proc. Amer. Math. Soc.68 (1978), 243–246. Zbl0348.22007MR492091
  35. [35] A. J. Silberger, Correction: “The Knapp-Stein dimension theorem for p -adic groups” [Proc. Amer. Math. Soc. 68 (1978), no. 2, 243–246 ; MR 58 11245],Proc. Amer. Math. Soc.76 (1979), 169–170. Zbl0415.22020MR492091
  36. [36] J.-L. Waldspurger, La formule de Plancherel pour les groupes p -adiques (d’après Harish-Chandra), J. Inst. Math. Jussieu2 (2003), 235–333. Zbl1029.22016MR1989693
  37. [37] N. R. Wallach, Real reductive groups. I, Pure and Applied Mathematics 132, Academic Press Inc., 1988. Zbl0666.22002MR929683
  38. [38] N. R. Wallach, Real reductive groups. II, Pure and Applied Mathematics 132-II, Academic Press Inc., 1992. Zbl0785.22001MR1170566
  39. [39] M. H. Weissman, Metaplectic tori over local fields, Pacific J. Math.241 (2009), 169–200. Zbl1230.11064MR2485462

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.