A local trace formula

James Arthur

Publications Mathématiques de l'IHÉS (1991)

  • Volume: 73, page 5-96
  • ISSN: 0073-8301

How to cite

top

Arthur, James. "A local trace formula." Publications Mathématiques de l'IHÉS 73 (1991): 5-96. <http://eudml.org/doc/104075>.

@article{Arthur1991,
author = {Arthur, James},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {diagonal embedding; local field; linear reductive group; irreducible representations; Selberg trace formula; distributions; discrete spectrum},
language = {eng},
pages = {5-96},
publisher = {Institut des Hautes Études Scientifiques},
title = {A local trace formula},
url = {http://eudml.org/doc/104075},
volume = {73},
year = {1991},
}

TY - JOUR
AU - Arthur, James
TI - A local trace formula
JO - Publications Mathématiques de l'IHÉS
PY - 1991
PB - Institut des Hautes Études Scientifiques
VL - 73
SP - 5
EP - 96
LA - eng
KW - diagonal embedding; local field; linear reductive group; irreducible representations; Selberg trace formula; distributions; discrete spectrum
UR - http://eudml.org/doc/104075
ER -

References

top
  1. [1] J. ARTHUR, The characters of discrete series as orbital integrals, Invent. Math., 32 (1976), 205-261. Zbl0359.22008MR54 #474
  2. [2] J. ARTHUR, A trace formula for reductive groups I: terms associated to classes in G(Q), Duke Math. J., 45 (1978), 911-952. Zbl0499.10032MR80d:10043
  3. [3] J. ARTHUR, A trace formula for reductive groups II: applications of a truncation operator, Compos. Math., 40 (1980), 87-121. Zbl0499.10033MR81b:22018
  4. [4] J. ARTHUR, The trace formula in invariant form, Ann. of Math., 114 (1981), 1-74. Zbl0495.22006MR84a:10031
  5. [5] J. ARTHUR, On the inner product of truncated Eisenstein series, Duke Math. J., 49 (1982), 35-70. Zbl0518.22012MR83e:22023
  6. [6] J. ARTHUR, On a family of distributions obtained from Eisenstein series II: Explicit formulas, Amer. J. Math., 104 (1982), 1289-1336. Zbl0562.22004MR85d:22033
  7. [7] J. ARTHUR, A Paley-Wiener theorem for real reductive groups, Acta Math., 150 (1983), 1-89. Zbl0514.22006MR84k:22021
  8. [8] J. ARTHUR, The local behaviour of weighted orbital integrals, Duke Math. J., 56 (1988), 223-293. Zbl0649.10020MR89h:22036
  9. [9] J. ARTHUR, The characters of supercuspidal representations as weighted orbital integrals, Proc. Indian Acad. Sci., 97 (1987), 3-19. Zbl0652.22009MR90c:22052
  10. [10] J. ARTHUR, The invariant trace formula I. Local theory, J. Amer. Math. Soc., 1 (1988), 323-383. Zbl0682.10021MR89e:22029
  11. [11] J. ARTHUR, Intertwining operators and residues I. Weighted characters, J. Funct. Anal., 84 (1989), 19-84. Zbl0679.22011MR90j:22018
  12. [12] J. ARTHUR, The trace formula and Hecke operators, in Number Theory, Trace Formulas and Discrete Groups, Academic Press, 1989, 11-27. Zbl0671.10026MR90e:11072
  13. [13] J. ARTHUR, Towards a local trace formula, in Algebraic Analysis, Geometry and Number Theory, The Johns Hopkins University Press, 1989, 1-24. Zbl0765.22010MR98h:22020
  14. [14] J. ARTHUR, Some problems in local harmonic analysis, to appear in Harmonic Analysis on Reductive Groups, Birkhäuser. Zbl0761.22013
  15. [15] HARISH-CHANDRA, A formula for semisimple Lie groups, Amer. J. Math., 79 (1957), 733-760. Zbl0080.10201MR20 #2633
  16. [16] HARISH-CHANDRA, Spherical functions on a semisimple Lie group. I, Amer. J. Math., 80 (1958), 241-310. Zbl0093.12801MR20 #925
  17. [17] HARISH-CHANDRA, Two theorems on semisimple Lie groups, Ann. of Math., 83 (1966), 74-128. Zbl0199.46403MR33 #2766
  18. [18] HARISH-CHANDRA, Harmonic Analysis on Reductive p-adic Groups, Springer Lecture Notes 162, 1970. Zbl0202.41101MR54 #2889
  19. [19] HARISH-CHANDRA, Harmonic analysis on reductive p-adic groups, in Harmonic Analysis on Homogeneous Spaces, Proc. Sympos. Pure Math., 26, A.M.S., 1973, 167-192. Zbl0289.22018MR49 #5238
  20. [20] HARISH-CHANDRA, Harmonic analysis on real reductive groups I. The theory of the constant term, J. Funct. Anal., 19 (1975), 104-204. Zbl0315.43002MR53 #3201
  21. [21] HARISH-CHANDRA, Harmonic analysis on real reductive groups II. Wave packets in the Schwartz space, Invent. Math., 36 (1976), 1-55. Zbl0341.43010MR55 #12874
  22. [22] HARISH-CHANDRA, Harmonic analysis on real reductive groups III. The Maass-Selberg relations and the Plancherel formula, Ann. of Math., 104 (1976), 117-201. Zbl0331.22007MR55 #12875
  23. [23] HARISH-CHANDRA, The Plancherel formula for reductive p-adic groups, in Collected Papers, Vol. IV, Springer-Verlag, 353-367. 
  24. [24] S. HELGASON, Differential Geometry and Symmetric Spaces, Academic Press, 1962. Zbl0111.18101MR26 #2986
  25. [25] D. KEYS, L-indistinguishability and R-groups for quasi-split groups: Unitary groups of even dimension, Ann. Scient. Éc. Norm. Sup., 4e Sér., 20 (1987), 31-64. Zbl0634.22014
  26. [26] R. P. LANGLANDS, Eisenstein series, the trace formula and the modern theory of automorphic forms, in Number Theory, Trace Formulas and Discrete Groups, Academic Press, 1989, 125-155. Zbl0671.10025MR90e:11077
  27. [27] I. G. MACDONALD, Spherical Functions on a Group of p-Adic Type, Publications of the Ramanujan Institute, Madras, 1971. Zbl0302.43018
  28. [28] W. MÜLLER, The trace class conjecture in the theory of automorphic forms, Ann. of Math., 130 (1989), 473-529. Zbl0701.11019MR90m:11083
  29. [29] A. SILBERGER, Introduction to Harmonic Analysis on Reductive p-Adic Groups, Mathematical Notes, Princeton University Press, 1979. Zbl0458.22006MR81m:22025
  30. [30] J. TITS, Reductive groups over local fields, in Automorphic Forms, Representations and L-functions, Proc. Sympos. Pure Math., 33, Part I, A.M.S., 1979, 29-69. Zbl0415.20035MR80h:20064
  31. [31] J. L. WALDSPURGER, Intégrales orbitales sphériques pour GL(N) sur un corps p-adique, Astérisque, 171-172 (1989), 279-337. Zbl0706.22015MR91g:22027

Citations in EuDML Documents

top
  1. Ngô Dac Tuân, Sur le développement spectral de la formule des traces d’Arthur-Selberg sur les corps de fonctions
  2. Patrick Delorme, Formule de Plancherel pour les fonctions de Whittaker sur un groupe réductif p -adique
  3. Qëndrim R. Gashi, On a conjecture of Kottwitz and Rapoport
  4. Pierre-Henri Chaudouard, Sur le changement de base stable des intégrales orbitales pondérées
  5. Wen-Wei Li, La formule des traces pour les revêtements de groupes réductifs connexes. II. Analyse harmonique locale

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.