A local trace formula
Publications Mathématiques de l'IHÉS (1991)
- Volume: 73, page 5-96
- ISSN: 0073-8301
Access Full Article
topHow to cite
topArthur, James. "A local trace formula." Publications Mathématiques de l'IHÉS 73 (1991): 5-96. <http://eudml.org/doc/104075>.
@article{Arthur1991,
author = {Arthur, James},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {diagonal embedding; local field; linear reductive group; irreducible representations; Selberg trace formula; distributions; discrete spectrum},
language = {eng},
pages = {5-96},
publisher = {Institut des Hautes Études Scientifiques},
title = {A local trace formula},
url = {http://eudml.org/doc/104075},
volume = {73},
year = {1991},
}
TY - JOUR
AU - Arthur, James
TI - A local trace formula
JO - Publications Mathématiques de l'IHÉS
PY - 1991
PB - Institut des Hautes Études Scientifiques
VL - 73
SP - 5
EP - 96
LA - eng
KW - diagonal embedding; local field; linear reductive group; irreducible representations; Selberg trace formula; distributions; discrete spectrum
UR - http://eudml.org/doc/104075
ER -
References
top- [1] J. ARTHUR, The characters of discrete series as orbital integrals, Invent. Math., 32 (1976), 205-261. Zbl0359.22008MR54 #474
- [2] J. ARTHUR, A trace formula for reductive groups I: terms associated to classes in G(Q), Duke Math. J., 45 (1978), 911-952. Zbl0499.10032MR80d:10043
- [3] J. ARTHUR, A trace formula for reductive groups II: applications of a truncation operator, Compos. Math., 40 (1980), 87-121. Zbl0499.10033MR81b:22018
- [4] J. ARTHUR, The trace formula in invariant form, Ann. of Math., 114 (1981), 1-74. Zbl0495.22006MR84a:10031
- [5] J. ARTHUR, On the inner product of truncated Eisenstein series, Duke Math. J., 49 (1982), 35-70. Zbl0518.22012MR83e:22023
- [6] J. ARTHUR, On a family of distributions obtained from Eisenstein series II: Explicit formulas, Amer. J. Math., 104 (1982), 1289-1336. Zbl0562.22004MR85d:22033
- [7] J. ARTHUR, A Paley-Wiener theorem for real reductive groups, Acta Math., 150 (1983), 1-89. Zbl0514.22006MR84k:22021
- [8] J. ARTHUR, The local behaviour of weighted orbital integrals, Duke Math. J., 56 (1988), 223-293. Zbl0649.10020MR89h:22036
- [9] J. ARTHUR, The characters of supercuspidal representations as weighted orbital integrals, Proc. Indian Acad. Sci., 97 (1987), 3-19. Zbl0652.22009MR90c:22052
- [10] J. ARTHUR, The invariant trace formula I. Local theory, J. Amer. Math. Soc., 1 (1988), 323-383. Zbl0682.10021MR89e:22029
- [11] J. ARTHUR, Intertwining operators and residues I. Weighted characters, J. Funct. Anal., 84 (1989), 19-84. Zbl0679.22011MR90j:22018
- [12] J. ARTHUR, The trace formula and Hecke operators, in Number Theory, Trace Formulas and Discrete Groups, Academic Press, 1989, 11-27. Zbl0671.10026MR90e:11072
- [13] J. ARTHUR, Towards a local trace formula, in Algebraic Analysis, Geometry and Number Theory, The Johns Hopkins University Press, 1989, 1-24. Zbl0765.22010MR98h:22020
- [14] J. ARTHUR, Some problems in local harmonic analysis, to appear in Harmonic Analysis on Reductive Groups, Birkhäuser. Zbl0761.22013
- [15] HARISH-CHANDRA, A formula for semisimple Lie groups, Amer. J. Math., 79 (1957), 733-760. Zbl0080.10201MR20 #2633
- [16] HARISH-CHANDRA, Spherical functions on a semisimple Lie group. I, Amer. J. Math., 80 (1958), 241-310. Zbl0093.12801MR20 #925
- [17] HARISH-CHANDRA, Two theorems on semisimple Lie groups, Ann. of Math., 83 (1966), 74-128. Zbl0199.46403MR33 #2766
- [18] HARISH-CHANDRA, Harmonic Analysis on Reductive p-adic Groups, Springer Lecture Notes 162, 1970. Zbl0202.41101MR54 #2889
- [19] HARISH-CHANDRA, Harmonic analysis on reductive p-adic groups, in Harmonic Analysis on Homogeneous Spaces, Proc. Sympos. Pure Math., 26, A.M.S., 1973, 167-192. Zbl0289.22018MR49 #5238
- [20] HARISH-CHANDRA, Harmonic analysis on real reductive groups I. The theory of the constant term, J. Funct. Anal., 19 (1975), 104-204. Zbl0315.43002MR53 #3201
- [21] HARISH-CHANDRA, Harmonic analysis on real reductive groups II. Wave packets in the Schwartz space, Invent. Math., 36 (1976), 1-55. Zbl0341.43010MR55 #12874
- [22] HARISH-CHANDRA, Harmonic analysis on real reductive groups III. The Maass-Selberg relations and the Plancherel formula, Ann. of Math., 104 (1976), 117-201. Zbl0331.22007MR55 #12875
- [23] HARISH-CHANDRA, The Plancherel formula for reductive p-adic groups, in Collected Papers, Vol. IV, Springer-Verlag, 353-367.
- [24] S. HELGASON, Differential Geometry and Symmetric Spaces, Academic Press, 1962. Zbl0111.18101MR26 #2986
- [25] D. KEYS, L-indistinguishability and R-groups for quasi-split groups: Unitary groups of even dimension, Ann. Scient. Éc. Norm. Sup., 4e Sér., 20 (1987), 31-64. Zbl0634.22014
- [26] R. P. LANGLANDS, Eisenstein series, the trace formula and the modern theory of automorphic forms, in Number Theory, Trace Formulas and Discrete Groups, Academic Press, 1989, 125-155. Zbl0671.10025MR90e:11077
- [27] I. G. MACDONALD, Spherical Functions on a Group of p-Adic Type, Publications of the Ramanujan Institute, Madras, 1971. Zbl0302.43018
- [28] W. MÜLLER, The trace class conjecture in the theory of automorphic forms, Ann. of Math., 130 (1989), 473-529. Zbl0701.11019MR90m:11083
- [29] A. SILBERGER, Introduction to Harmonic Analysis on Reductive p-Adic Groups, Mathematical Notes, Princeton University Press, 1979. Zbl0458.22006MR81m:22025
- [30] J. TITS, Reductive groups over local fields, in Automorphic Forms, Representations and L-functions, Proc. Sympos. Pure Math., 33, Part I, A.M.S., 1979, 29-69. Zbl0415.20035MR80h:20064
- [31] J. L. WALDSPURGER, Intégrales orbitales sphériques pour GL(N) sur un corps p-adique, Astérisque, 171-172 (1989), 279-337. Zbl0706.22015MR91g:22027
Citations in EuDML Documents
top- Ngô Dac Tuân, Sur le développement spectral de la formule des traces d’Arthur-Selberg sur les corps de fonctions
- Patrick Delorme, Formule de Plancherel pour les fonctions de Whittaker sur un groupe réductif -adique
- Qëndrim R. Gashi, On a conjecture of Kottwitz and Rapoport
- Pierre-Henri Chaudouard, Sur le changement de base stable des intégrales orbitales pondérées
- Wen-Wei Li, La formule des traces pour les revêtements de groupes réductifs connexes. II. Analyse harmonique locale
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.