Rational BV-algebra in string topology
Yves Félix; Jean-Claude Thomas
Bulletin de la Société Mathématique de France (2008)
- Volume: 136, Issue: 2, page 311-327
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topFélix, Yves, and Thomas, Jean-Claude. "Rational BV-algebra in string topology." Bulletin de la Société Mathématique de France 136.2 (2008): 311-327. <http://eudml.org/doc/272416>.
@article{Félix2008,
abstract = {Let $M$ be a 1-connected closed manifold of dimension $m$ and $LM$ be the space of free loops on $M$. M.Chas and D.Sullivan defined a structure of BV-algebra on the singular homology of $LM$, $H_\ast (LM; k)$. When the ring of coefficients is a field of characteristic zero, we prove that there exists a BV-algebra structure on the Hochschild cohomology $HH^\ast (C^\ast (M); C^\ast (M))$ which extends the canonical structure of Gerstenhaber algebra. We construct then an isomorphism of BV-algebras between $HH^\ast (C^\ast (M); C^\ast (M)) $ and the shifted homology $ H_\{\ast +m\} (LM; k)$. We also prove that the Chas-Sullivan product and the BV-operator behave well with a Hodge decomposition of $H_\ast (LM)$.},
author = {Félix, Yves, Thomas, Jean-Claude},
journal = {Bulletin de la Société Mathématique de France},
keywords = {string homology; rational homotopy; Hochschild cohomology; free loop space homology; BV-algebra; Gerstenhaber algebra},
language = {eng},
number = {2},
pages = {311-327},
publisher = {Société mathématique de France},
title = {Rational BV-algebra in string topology},
url = {http://eudml.org/doc/272416},
volume = {136},
year = {2008},
}
TY - JOUR
AU - Félix, Yves
AU - Thomas, Jean-Claude
TI - Rational BV-algebra in string topology
JO - Bulletin de la Société Mathématique de France
PY - 2008
PB - Société mathématique de France
VL - 136
IS - 2
SP - 311
EP - 327
AB - Let $M$ be a 1-connected closed manifold of dimension $m$ and $LM$ be the space of free loops on $M$. M.Chas and D.Sullivan defined a structure of BV-algebra on the singular homology of $LM$, $H_\ast (LM; k)$. When the ring of coefficients is a field of characteristic zero, we prove that there exists a BV-algebra structure on the Hochschild cohomology $HH^\ast (C^\ast (M); C^\ast (M))$ which extends the canonical structure of Gerstenhaber algebra. We construct then an isomorphism of BV-algebras between $HH^\ast (C^\ast (M); C^\ast (M)) $ and the shifted homology $ H_{\ast +m} (LM; k)$. We also prove that the Chas-Sullivan product and the BV-operator behave well with a Hodge decomposition of $H_\ast (LM)$.
LA - eng
KW - string homology; rational homotopy; Hochschild cohomology; free loop space homology; BV-algebra; Gerstenhaber algebra
UR - http://eudml.org/doc/272416
ER -
References
top- [1] J.-L. Brylinski – Loop spaces, characteristic classes and geometric quantization, Progress in Mathematics, vol. 107, Birkhäuser, 1993. Zbl0823.55002MR1197353
- [2] D. Burghelea & M. Vigué-Poirrier – « Cyclic homology of commutative algebras I », Proceedings of the Meeting on Algebraic Homotopy, Louvain, 1986, Lectures Notes in Math. 1318 (1988), p. 51–72. Zbl0666.13007MR952571
- [3] M. Chas & D. Sullivan – « String topology », preprint arXiv:math.GT/9911159, 1999.
- [4] D. Chataur – « A bordism approach to string topology », Int. Math. Res. Not.46 (2005), p. 2829–2875. Zbl1086.55004MR2180465
- [5] R. L. Cohen & J. D. S. Jones – « A homotopy theoretic realization of string topology », Math. Ann.324 (2002), p. 773–798. Zbl1025.55005MR1942249
- [6] R. L. Cohen, J. D. S. Jones & J. Yan – The loop homology algebra of spheres and projective spaces, Progr. Math., vol. 215, Birkhäuser, 2004. Zbl1054.55006MR2039760
- [7] Y. Félix, S. Halperin & J.-C. Thomas – Differential graded algebras in topology, North-Holland, 1995. Zbl0868.55016MR1361901
- [8] —, Rational homotopy theory, Graduate Texts in Mathematics, vol. 205, Springer, 2001. Zbl0961.55002MR1802847
- [9] Y. Félix, L. Menichi & J.-C. Thomas – « Gerstenhaber duality in Hochschild cohomology », J. Pure Appl. Algebra199 (2005), p. 43–59. Zbl1076.55003MR2134291
- [10] Y. Félix & J.-C. Thomas – « Monoid of self-equivalences and free loop spaces », Proc. Amer. Math. Soc.132 (2004), p. 305–312. Zbl1055.55010MR2021275
- [11] Y. Felix, J.-C. Thomas & M. Vigué-Poirrier – « The Hochschild cohomology of a closed manifold », Publ. Math. Inst. Hautes Études Sci.99 (2004), p. 235–252. Zbl1060.57019MR2075886
- [12] Y. Félix, J.-C. Thomas & M. Vigué-Poirrier – « Rational string topology », J. Eur. Math. Soc. (JEMS) 9 (2007), p. 123–156. Zbl1200.55015MR2283106
- [13] K. Fujii – « Iterated integrals and the loop product », preprint arXiv:math/07040014.
- [14] M. Gerstenhaber – « The cohomology structure of an associative ring », Ann. of Math. (2) 78 (1963), p. 267–288. Zbl0131.27302MR161898
- [15] M. Gerstenhaber & S. D. Schak – « A Hogde type decomposition for commutative algebras », J. Pure Appl. Algebra48 (1987), p. 229–289. Zbl0671.13007MR917209
- [16] V. Ginsburg – « Calabi-Yau algebras », preprint arXiv:math/0612139.
- [17] K. Gruher & P. Salvatore – « Generalized string topology operations », preprint arXiv:math.AT/0602210. Zbl1143.57012MR2392316
- [18] A. Hamilton & A. Lazarev – « Homotopy algebras and noncommutative geometry », preprint arXiv:math.QA/0410621. MR2462359
- [19] J. D. S. Jones – « Cyclic homology and equivariant homology », Invent. Math.87 (1987), p. 403–423. Zbl0644.55005MR870737
- [20] P. Lambrechts & D. Stanley – « Poincaré duality and commutative differential graded algebras », preprint arXiv:math/0701309. Zbl1172.13009MR2489632
- [21] J.-L. Loday – « Opérations sur l’homologie cyclique des algèbres commutatives », Invent. Math.96 (1989), p. 205–230. Zbl0686.18006MR981743
- [22] L. Menichi – « String topology for spheres », preprint arXiv:math/AT/0609304. Zbl1159.55004MR2466078
- [23] —, « Batalin-Vilkovisky algebras and cyclic cohomology of Hopf algebras », -Theory 32 (2004), p. 231–251. Zbl1101.19003MR2114167
- [24] S. A. Merkulov – « De Rham model for string topology », Int. Math. Res. Not. (2004), p. 2955–2981. Zbl1066.55008MR2099178
- [25] A. Stacey – « The differential topology of loop spaces », preprint arXiv:math.DG/0510097.
- [26] J. Stasheff – « The intrinsic bracket on the deformation complex of an associative algebra », J. Pure Appl. Algebra89 (1993), p. 231–235. Zbl0786.57017MR1239562
- [27] D. Sullivan – « Open and closed string field theory interpreted in classical algebraic topology », in Topology, geometry and quantum field theory, London Math. Soc. Lecture Note Ser., vol. 308, Cambridge Univ. Press, 2004, p. 344–357. Zbl1088.81082MR2079379
- [28] T. Tradler – « The BV algebra on Hochschild cohomology induced by infinity inner products », preprint arXiv:math.QA/0210150.
- [29] T. Tradler & M. Zeinalian – « Infinity structure of Poincaré duality spaces », Algebr. Geom. Topol. 7 (2007), p. 233–260, Appendix by Dennis Sullivan. Zbl1137.57025MR2308943
- [30] D. Vaintrob – « The string topology BV algebra, Hochschild cohomology and the Goldman bracket on surfaces », preprint arXiv:math/0702859.
- [31] M. Vigué-Poirrier – « Homologie de Hochschild et homologie cyclique des algèbres différentielles graduées », Astérisque 191 (1990), p. 7, 255–267, International Conference on Homotopy Theory (Marseille-Luminy, 1988). Zbl0728.19003MR1098974
- [32] —, « Décompositions de l’homologie cyclique des algèbres différentielles graduées commutatives », -Theory 4 (1991), p. 399–410. Zbl0731.19004MR1116926
- [33] M. Vigué-Poirrier & D. Burghelea – « A model for cyclic homology and algebraic -theory of -connected topological spaces », J. Differential Geom.22 (1985), p. 243–253. Zbl0595.55009MR834279
- [34] M. Vigué-Poirrier & D. Sullivan – « The homology theory of the closed geodesic problem », J. Differential Geometry11 (1976), p. 633–644. Zbl0361.53058MR455028
Citations in EuDML Documents
top- Pascal Lambrechts, Don Stanley, Poincaré duality and commutative differential graded algebras
- David Chataur, Jean-François Le Borgne, On the loop homology of complex projective spaces
- Grégory Ginot, Thomas Tradler, Mahmoud Zeinalian, A Chen model for mapping spaces and the surface product
- Katsuhiko Kuribayashi, The Hochschild cohomology ring of the singular cochain algebra of a space
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.