Rational BV-algebra in string topology

Yves Félix; Jean-Claude Thomas

Bulletin de la Société Mathématique de France (2008)

  • Volume: 136, Issue: 2, page 311-327
  • ISSN: 0037-9484

Abstract

top
Let M be a 1-connected closed manifold of dimension m and L M be the space of free loops on M . M.Chas and D.Sullivan defined a structure of BV-algebra on the singular homology of L M , H * ( L M ; k ) . When the ring of coefficients is a field of characteristic zero, we prove that there exists a BV-algebra structure on the Hochschild cohomology H H * ( C * ( M ) ; C * ( M ) ) which extends the canonical structure of Gerstenhaber algebra. We construct then an isomorphism of BV-algebras between H H * ( C * ( M ) ; C * ( M ) ) and the shifted homology H * + m ( L M ; k ) . We also prove that the Chas-Sullivan product and the BV-operator behave well with a Hodge decomposition of H * ( L M ) .

How to cite

top

Félix, Yves, and Thomas, Jean-Claude. "Rational BV-algebra in string topology." Bulletin de la Société Mathématique de France 136.2 (2008): 311-327. <http://eudml.org/doc/272416>.

@article{Félix2008,
abstract = {Let $M$ be a 1-connected closed manifold of dimension $m$ and $LM$ be the space of free loops on $M$. M.Chas and D.Sullivan defined a structure of BV-algebra on the singular homology of $LM$, $H_\ast (LM; k)$. When the ring of coefficients is a field of characteristic zero, we prove that there exists a BV-algebra structure on the Hochschild cohomology $HH^\ast (C^\ast (M); C^\ast (M))$ which extends the canonical structure of Gerstenhaber algebra. We construct then an isomorphism of BV-algebras between $HH^\ast (C^\ast (M); C^\ast (M)) $ and the shifted homology $ H_\{\ast +m\} (LM; k)$. We also prove that the Chas-Sullivan product and the BV-operator behave well with a Hodge decomposition of $H_\ast (LM)$.},
author = {Félix, Yves, Thomas, Jean-Claude},
journal = {Bulletin de la Société Mathématique de France},
keywords = {string homology; rational homotopy; Hochschild cohomology; free loop space homology; BV-algebra; Gerstenhaber algebra},
language = {eng},
number = {2},
pages = {311-327},
publisher = {Société mathématique de France},
title = {Rational BV-algebra in string topology},
url = {http://eudml.org/doc/272416},
volume = {136},
year = {2008},
}

TY - JOUR
AU - Félix, Yves
AU - Thomas, Jean-Claude
TI - Rational BV-algebra in string topology
JO - Bulletin de la Société Mathématique de France
PY - 2008
PB - Société mathématique de France
VL - 136
IS - 2
SP - 311
EP - 327
AB - Let $M$ be a 1-connected closed manifold of dimension $m$ and $LM$ be the space of free loops on $M$. M.Chas and D.Sullivan defined a structure of BV-algebra on the singular homology of $LM$, $H_\ast (LM; k)$. When the ring of coefficients is a field of characteristic zero, we prove that there exists a BV-algebra structure on the Hochschild cohomology $HH^\ast (C^\ast (M); C^\ast (M))$ which extends the canonical structure of Gerstenhaber algebra. We construct then an isomorphism of BV-algebras between $HH^\ast (C^\ast (M); C^\ast (M)) $ and the shifted homology $ H_{\ast +m} (LM; k)$. We also prove that the Chas-Sullivan product and the BV-operator behave well with a Hodge decomposition of $H_\ast (LM)$.
LA - eng
KW - string homology; rational homotopy; Hochschild cohomology; free loop space homology; BV-algebra; Gerstenhaber algebra
UR - http://eudml.org/doc/272416
ER -

References

top
  1. [1] J.-L. Brylinski – Loop spaces, characteristic classes and geometric quantization, Progress in Mathematics, vol. 107, Birkhäuser, 1993. Zbl0823.55002MR1197353
  2. [2] D. Burghelea & M. Vigué-Poirrier – « Cyclic homology of commutative algebras I », Proceedings of the Meeting on Algebraic Homotopy, Louvain, 1986, Lectures Notes in Math. 1318 (1988), p. 51–72. Zbl0666.13007MR952571
  3. [3] M. Chas & D. Sullivan – « String topology », preprint arXiv:math.GT/9911159, 1999. 
  4. [4] D. Chataur – « A bordism approach to string topology », Int. Math. Res. Not.46 (2005), p. 2829–2875. Zbl1086.55004MR2180465
  5. [5] R. L. Cohen & J. D. S. Jones – « A homotopy theoretic realization of string topology », Math. Ann.324 (2002), p. 773–798. Zbl1025.55005MR1942249
  6. [6] R. L. Cohen, J. D. S. Jones & J. Yan – The loop homology algebra of spheres and projective spaces, Progr. Math., vol. 215, Birkhäuser, 2004. Zbl1054.55006MR2039760
  7. [7] Y. Félix, S. Halperin & J.-C. Thomas – Differential graded algebras in topology, North-Holland, 1995. Zbl0868.55016MR1361901
  8. [8] —, Rational homotopy theory, Graduate Texts in Mathematics, vol. 205, Springer, 2001. Zbl0961.55002MR1802847
  9. [9] Y. Félix, L. Menichi & J.-C. Thomas – « Gerstenhaber duality in Hochschild cohomology », J. Pure Appl. Algebra199 (2005), p. 43–59. Zbl1076.55003MR2134291
  10. [10] Y. Félix & J.-C. Thomas – « Monoid of self-equivalences and free loop spaces », Proc. Amer. Math. Soc.132 (2004), p. 305–312. Zbl1055.55010MR2021275
  11. [11] Y. Felix, J.-C. Thomas & M. Vigué-Poirrier – « The Hochschild cohomology of a closed manifold », Publ. Math. Inst. Hautes Études Sci.99 (2004), p. 235–252. Zbl1060.57019MR2075886
  12. [12] Y. Félix, J.-C. Thomas & M. Vigué-Poirrier – « Rational string topology », J. Eur. Math. Soc. (JEMS) 9 (2007), p. 123–156. Zbl1200.55015MR2283106
  13. [13] K. Fujii – « Iterated integrals and the loop product », preprint arXiv:math/07040014. 
  14. [14] M. Gerstenhaber – « The cohomology structure of an associative ring », Ann. of Math. (2) 78 (1963), p. 267–288. Zbl0131.27302MR161898
  15. [15] M. Gerstenhaber & S. D. Schak – « A Hogde type decomposition for commutative algebras », J. Pure Appl. Algebra48 (1987), p. 229–289. Zbl0671.13007MR917209
  16. [16] V. Ginsburg – « Calabi-Yau algebras », preprint arXiv:math/0612139. 
  17. [17] K. Gruher & P. Salvatore – « Generalized string topology operations », preprint arXiv:math.AT/0602210. Zbl1143.57012MR2392316
  18. [18] A. Hamilton & A. Lazarev – « Homotopy algebras and noncommutative geometry », preprint arXiv:math.QA/0410621. MR2462359
  19. [19] J. D. S. Jones – « Cyclic homology and equivariant homology », Invent. Math.87 (1987), p. 403–423. Zbl0644.55005MR870737
  20. [20] P. Lambrechts & D. Stanley – « Poincaré duality and commutative differential graded algebras », preprint arXiv:math/0701309. Zbl1172.13009MR2489632
  21. [21] J.-L. Loday – « Opérations sur l’homologie cyclique des algèbres commutatives », Invent. Math.96 (1989), p. 205–230. Zbl0686.18006MR981743
  22. [22] L. Menichi – « String topology for spheres », preprint arXiv:math/AT/0609304. Zbl1159.55004MR2466078
  23. [23] —, « Batalin-Vilkovisky algebras and cyclic cohomology of Hopf algebras », K -Theory 32 (2004), p. 231–251. Zbl1101.19003MR2114167
  24. [24] S. A. Merkulov – « De Rham model for string topology », Int. Math. Res. Not. (2004), p. 2955–2981. Zbl1066.55008MR2099178
  25. [25] A. Stacey – « The differential topology of loop spaces », preprint arXiv:math.DG/0510097. 
  26. [26] J. Stasheff – « The intrinsic bracket on the deformation complex of an associative algebra », J. Pure Appl. Algebra89 (1993), p. 231–235. Zbl0786.57017MR1239562
  27. [27] D. Sullivan – « Open and closed string field theory interpreted in classical algebraic topology », in Topology, geometry and quantum field theory, London Math. Soc. Lecture Note Ser., vol. 308, Cambridge Univ. Press, 2004, p. 344–357. Zbl1088.81082MR2079379
  28. [28] T. Tradler – « The BV algebra on Hochschild cohomology induced by infinity inner products », preprint arXiv:math.QA/0210150. 
  29. [29] T. Tradler & M. Zeinalian – « Infinity structure of Poincaré duality spaces », Algebr. Geom. Topol. 7 (2007), p. 233–260, Appendix by Dennis Sullivan. Zbl1137.57025MR2308943
  30. [30] D. Vaintrob – « The string topology BV algebra, Hochschild cohomology and the Goldman bracket on surfaces », preprint arXiv:math/0702859. 
  31. [31] M. Vigué-Poirrier – « Homologie de Hochschild et homologie cyclique des algèbres différentielles graduées », Astérisque 191 (1990), p. 7, 255–267, International Conference on Homotopy Theory (Marseille-Luminy, 1988). Zbl0728.19003MR1098974
  32. [32] —, « Décompositions de l’homologie cyclique des algèbres différentielles graduées commutatives », K -Theory 4 (1991), p. 399–410. Zbl0731.19004MR1116926
  33. [33] M. Vigué-Poirrier & D. Burghelea – « A model for cyclic homology and algebraic K -theory of 1 -connected topological spaces », J. Differential Geom.22 (1985), p. 243–253. Zbl0595.55009MR834279
  34. [34] M. Vigué-Poirrier & D. Sullivan – « The homology theory of the closed geodesic problem », J. Differential Geometry11 (1976), p. 633–644. Zbl0361.53058MR455028

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.