Overconvergent modular forms

Vincent Pilloni[1]

  • [1] Unité de Mathématiques Pures et Appliquées École Normale Supérieure de Lyon 46, allée d’Italie 69364 Lyon Cedex 07 (France)

Annales de l’institut Fourier (2013)

  • Volume: 63, Issue: 1, page 219-239
  • ISSN: 0373-0956

Abstract

top
We give a geometric definition of overconvergent modular forms of any p -adic weight. As an application, we reprove Coleman’s theory of p -adic families of modular forms and reconstruct the eigencurve of Coleman and Mazur without using the Eisenstein family.

How to cite

top

Pilloni, Vincent. "Overconvergent modular forms." Annales de l’institut Fourier 63.1 (2013): 219-239. <http://eudml.org/doc/275479>.

@article{Pilloni2013,
abstract = {We give a geometric definition of overconvergent modular forms of any $p$-adic weight. As an application, we reprove Coleman’s theory of $p$-adic families of modular forms and reconstruct the eigencurve of Coleman and Mazur without using the Eisenstein family.},
affiliation = {Unité de Mathématiques Pures et Appliquées École Normale Supérieure de Lyon 46, allée d’Italie 69364 Lyon Cedex 07 (France)},
author = {Pilloni, Vincent},
journal = {Annales de l’institut Fourier},
keywords = {formes modulaires $p$-adiques; formes modulaires suronvergentes; courbes modulaires; -adic modular forms; overconvergent modular forms; modular curves; eigencurve},
language = {eng},
number = {1},
pages = {219-239},
publisher = {Association des Annales de l’institut Fourier},
title = {Overconvergent modular forms},
url = {http://eudml.org/doc/275479},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Pilloni, Vincent
TI - Overconvergent modular forms
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 1
SP - 219
EP - 239
AB - We give a geometric definition of overconvergent modular forms of any $p$-adic weight. As an application, we reprove Coleman’s theory of $p$-adic families of modular forms and reconstruct the eigencurve of Coleman and Mazur without using the Eisenstein family.
LA - eng
KW - formes modulaires $p$-adiques; formes modulaires suronvergentes; courbes modulaires; -adic modular forms; overconvergent modular forms; modular curves; eigencurve
UR - http://eudml.org/doc/275479
ER -

References

top
  1. F. Andreatta, A. Iovita, G. Stevens, Geometric overconvergent modular forms Zbl1326.14051
  2. P. Berthelot, Cohomologie rigide et cohomologie rigide à support propre, (1996) 
  3. Kevin Buzzard, Eigenvarieties, -functions and Galois representations 320 (2007), 59-120, Cambridge Univ. Press, Cambridge Zbl1230.11054MR2367390
  4. Kevin Buzzard, Richard Taylor, Companion forms and weight one forms, Ann. of Math. (2) 149 (1999), 905-919 Zbl0965.11019MR1709306
  5. Robert F. Coleman, p -adic Banach spaces and families of modular forms, Invent. Math. 127 (1997), 417-479 Zbl0918.11026MR1431135
  6. Robert F. Coleman, B. Mazur, The eigencurve, Galois representations in arithmetic algebraic geometry (Durham, 1996) 254 (1998), 1-113, Cambridge Univ. Press, Cambridge Zbl0932.11030MR1696469
  7. Laurent Fargues, Application de Hodge-Tate duale d’un groupe de Lubin-Tate, immeuble de Bruhat-Tits du groupe linéaire et filtrations de ramification, Duke Math. J. 140 (2007), 499-590 Zbl1136.14013MR2362243
  8. Laurent Fargues, La filtration de Harder-Narasimhan des schémas en groupes finis et plats, J. Reine Angew. Math. 645 (2010), 1-39 Zbl1199.14015MR2673421
  9. Haruzo Hida, Iwasawa modules attached to congruences of cusp forms, Ann. Sci. École Norm. Sup. (4) 19 (1986), 231-273 Zbl0607.10022MR868300
  10. Haruzo Hida, p -adic automorphic forms on reductive groups, Astérisque (2005), 147-254 Zbl1122.11026MR2141703
  11. Nicholas M. Katz, p -adic properties of modular schemes and modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) (1973), 69-190. Lecture Notes in Mathematics, Vol. 350, Springer, Berlin Zbl0271.10033MR447119
  12. B. Mazur, William Messing, Universal extensions and one dimensional crystalline cohomology, (1974), Springer-Verlag, Berlin Zbl0301.14016MR374150
  13. John Tate, Frans Oort, Group schemes of prime order, Ann. Sci. École Norm. Sup. (4) 3 (1970), 1-21 Zbl0195.50801MR265368

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.