On the motion of rigid bodies in a viscous fluid

Eduard Feireisl

Applications of Mathematics (2002)

  • Volume: 47, Issue: 6, page 463-484
  • ISSN: 0862-7940

Abstract

top
We consider the problem of motion of several rigid bodies in a viscous fluid. Both compressible and incompressible fluids are studied. In both cases, the existence of globally defined weak solutions is established regardless possible collisions of two or more rigid objects.

How to cite

top

Feireisl, Eduard. "On the motion of rigid bodies in a viscous fluid." Applications of Mathematics 47.6 (2002): 463-484. <http://eudml.org/doc/33127>.

@article{Feireisl2002,
abstract = {We consider the problem of motion of several rigid bodies in a viscous fluid. Both compressible and incompressible fluids are studied. In both cases, the existence of globally defined weak solutions is established regardless possible collisions of two or more rigid objects.},
author = {Feireisl, Eduard},
journal = {Applications of Mathematics},
keywords = {rigid body; compressible fluid; incompressible fluid; global existence; rigid body; compressible fluid; incompressible fluid; global existence},
language = {eng},
number = {6},
pages = {463-484},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the motion of rigid bodies in a viscous fluid},
url = {http://eudml.org/doc/33127},
volume = {47},
year = {2002},
}

TY - JOUR
AU - Feireisl, Eduard
TI - On the motion of rigid bodies in a viscous fluid
JO - Applications of Mathematics
PY - 2002
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 47
IS - 6
SP - 463
EP - 484
AB - We consider the problem of motion of several rigid bodies in a viscous fluid. Both compressible and incompressible fluids are studied. In both cases, the existence of globally defined weak solutions is established regardless possible collisions of two or more rigid objects.
LA - eng
KW - rigid body; compressible fluid; incompressible fluid; global existence; rigid body; compressible fluid; incompressible fluid; global existence
UR - http://eudml.org/doc/33127
ER -

References

top
  1. 10.1007/s002050050136, Arch. Rational Mech. Anal. 146 (1999), 59–71. (1999) MR1682663DOI10.1007/s002050050136
  2. On weak solutions for fluid-rigid structure interaction: Compressible and incompressible models, Commun. Partial Differential Equations 25 (2000), 1399–1413. (2000) MR1765138
  3. 10.1007/BF01393835, Invent. Math. 98 (1989), 511–547. (1989) MR1022305DOI10.1007/BF01393835
  4. On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable, Comment. Math. Univ. Carolinae 42 (2001), 83–98. (2001) Zbl1115.35096MR1825374
  5. On the motion of rigid bodies in a viscous compressible fluid, Arch. Rational Mech. Anal. (2002) (to appear). (2002) MR1981859
  6. On the motion of rigid bodies in a viscous incompressible fluid, J. Evolution Equations (2002) (to appear). (2002) MR2019028
  7. On the existence of globally defined weak solutions to the Navier-Stokes equations of compressible isentropic fluids, J. Math. Fluid Dynamics 3 (2001), 358–392. (2001) MR1867887
  8. 10.1007/s002050050156, Arch. Rat. Mech. Anal. 148 (1999), 53–88. (1999) MR1715453DOI10.1007/s002050050156
  9. Multicomponent Flow Modeling, Birkhäuser, Basel, 1999. (1999) Zbl0956.76003MR1713516
  10. 10.1007/PL00000954, J.  Math. Fluid Mech. 2 (2000), 219–266. (2000) MR1781915DOI10.1007/PL00000954
  11. Zur Bewegung einer Kugel in einer zäher Flüssigkeit, TUM-M9618, München, 1996. (1996) 
  12. Mathematical Topics in Fluid Dynamics, Vol.2. Compressible models, Oxford Science Publication, Oxford, 1998. (1998) MR1637634
  13. Mechanics of Mixtures, World Scientific, Singapore, 1995. (1995) MR1370661
  14. Global weak solutions for the two dimensional motion of several rigid bodies in an incompressible viscous fluid, Arch. Rational Mech. Anal. 161 (2002), 93–112. (2002) MR1870954
  15. 10.1007/BF03167757, Jap. J.  Appl. Math. 4 (1987), 99–110. (1987) MR0899206DOI10.1007/BF03167757
  16. On the effect of internal friction of fluids on the motion of pendulums, Trans. Cambridge Phil. Soc. 9 (1851), 80–85. (1851) 

Citations in EuDML Documents

top
  1. Patricio Cumsille, Takéo Takahashi, Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid
  2. Jaime H. Ortega, Lionel Rosier, Takéo Takahashi, Classical solutions for the equations modelling the motion of a ball in a bidimensional incompressible perfect fluid
  3. M. Hillairet, Chute stationnaire d’un solide dans un fluide visqueux incompressible au-dessus d’un plan incliné. Partie 2
  4. Jaime H. Ortega, Lionel Rosier, Takéo Takahashi, Classical solutions for the equations modelling the motion of a ball in a bidimensional incompressible perfect fluid
  5. Jaime Ortega, Lionel Rosier, Takéo Takahashi, On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid
  6. Franck Sueur, Sur la dynamique de corps solides immergés dans un fluide incompressible

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.