Solution with finite energy to a BGK system relaxing to isentropic gas dynamics
Florent Berthelin; François Bouchut
Annales de la Faculté des sciences de Toulouse : Mathématiques (2000)
- Volume: 9, Issue: 4, page 605-630
- ISSN: 0240-2963
Access Full Article
topHow to cite
topBerthelin, Florent, and Bouchut, François. "Solution with finite energy to a BGK system relaxing to isentropic gas dynamics." Annales de la Faculté des sciences de Toulouse : Mathématiques 9.4 (2000): 605-630. <http://eudml.org/doc/73529>.
@article{Berthelin2000,
author = {Berthelin, Florent, Bouchut, François},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {gas dynamics with relaxation; entropy solution; kinetic formulation; existence},
language = {eng},
number = {4},
pages = {605-630},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Solution with finite energy to a BGK system relaxing to isentropic gas dynamics},
url = {http://eudml.org/doc/73529},
volume = {9},
year = {2000},
}
TY - JOUR
AU - Berthelin, Florent
AU - Bouchut, François
TI - Solution with finite energy to a BGK system relaxing to isentropic gas dynamics
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2000
PB - UNIVERSITE PAUL SABATIER
VL - 9
IS - 4
SP - 605
EP - 630
LA - eng
KW - gas dynamics with relaxation; entropy solution; kinetic formulation; existence
UR - http://eudml.org/doc/73529
ER -
References
top- [1] Aregba-Driollet ( D.), Natalini ( R.). — Discrete kinetic schemes for multidimensional systems of conservation laws, SIAM J. Numer. Anal.37 (2000), 1973-2004. Zbl0964.65096MR1766856
- [2] Berthelin ( F.), Bouchut ( F.). - Kinetic invariant domains and relaxation limit from a BGK model to isentropic gas dynamics, to appear in Asymptotic Analysis. Zbl1032.76064MR1938602
- [3] Bouchut ( F.). — Construction of BGK models with a family of kinetic entropies for a given system of conservation laws, J. Statist. Phys.95 (1999), 113-170. Zbl0957.82028MR1705583
- [4] Brenier ( Y.). — Averaged multivalued solutions for scalar conservation laws, SIAM J. Numer. Anal.21 (1984), 1013-1037. Zbl0565.65054MR765504
- [5] Brenier ( Y.), Corrias ( L.). — A kinetic formulation for multi-branch entropy solutions of scalar conservation laws, Ann. Inst. H. Poincaré Anal. Non Linéaire15 (1998), 169-190. Zbl0893.35068MR1614638
- [6] Chen ( G.Q.), Levermore ( C.D.), Liu ( T.-P.). — Hyperbolic conservation laws with stiff relaxation terms and entropy, Comm. Pure Appl. Math.47 (1994), 787-830. Zbl0806.35112MR1280989
- [7] Diperna ( R.J.). — Convergence of the viscosity method for isentropic gas dynamics, Comm. Math. Phys.91 (1983), 1-30. Zbl0533.76071MR719807
- [8] Golse ( F.), Lions ( P.-L.), Perthame ( B.), Sentis ( R.). - Regularity of the moments of the solution of a transport equation, J. Funct. Anal., 76, (1988), 110-125. Zbl0652.47031MR923047
- [9] Jin ( S.), Xin ( Z.-P.). — The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Comm. Pure Appl. Math.48 (1995), 235-276. Zbl0826.65078MR1322811
- [10] Lions ( P.-L.), Perthame ( B.), Souganidis ( P.E.). — Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates, Comm. Pure Appl. Math.49 (1996), 599-638. Zbl0853.76077MR1383202
- [11] Lions ( P.-L.), Perthame ( B.), Tadmor ( E.). — A kinetic formulation of multidimensional scalar conservation laws and related equations, J. Amer. Math. Soc.7 (1994), 169-191. Zbl0820.35094MR1201239
- [12] Lions ( P.-L.), Perthame ( B.), Tadmor ( E.). — Kinetic formulation of the isentropic gas dynamics and p-systems, Comm. Math. Phys.163 (1994), 415-431. Zbl0799.35151MR1284790
- [13] Natalini ( R.). — A discrete kinetic approximation of entropy solutions to multidimensional scalar conservation laws, J. Diff. Eq.148 (1998), 292-317. Zbl0911.35073MR1643175
- [14] Natalini ( R.). — Recent results on hyperbolic relaxation problems. Analysis of systems of conservation laws (Aachen, 1997), 128-198. Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math., 99, Chapman & Hall/CRC, Boca Raton, FL, 1999. Zbl0940.35127
- [15] Perthame ( B.). — Global existence to the BGK model of Boltzmann equation, J. Diff. Eq.82 (1989), 191-205. Zbl0694.35134MR1023307
- [16] Perthame ( B.), Pulvirenti ( M.). - Weighted L∞ bounds and uniqueness for the Boltzmann BGK model, Arch. Rational Mech. Anal.125 (1993), 289-295. Zbl0786.76072MR1245074
- [17] Perthame ( B.), Tadmor ( E.). — A kinetic equation with kinetic entropy functions for scalar conservation laws, Comm. Math. Phys.136 (1991), 501-517. Zbl0729.76070MR1099693
- [18] Serre ( D.). — Relaxation semi-linéaire et cinétique des systèmes de lois de conservation, Ann. Inst. H. Poincaré Anal. non linéaire17 (2000), 169-192. Zbl0963.35117MR1753092
Citations in EuDML Documents
top- Florent Berthelin, Numerical flux-splitting for a class of hyperbolic systems with unilateral constraint
- Florent Berthelin, Numerical flux-splitting for a class of hyperbolic systems with unilateral constraint
- F Berthelin, F Bouchut, Weak solutions for a hyperbolic system with unilateral constraint and mass loss
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.