Absolutely convex sets in barrelled spaces

Manuel Valdivia

Annales de l'institut Fourier (1971)

  • Volume: 21, Issue: 2, page 3-13
  • ISSN: 0373-0956

Abstract

top
If { A n } is an increasing sequence of absolutely convex sets, in a barrelled space E , such that n = 1 A n = E , it is deduced some properties of E from the properties of the sets of { A n } . It is shown that in a barrelled space any subspace of infinite countable codimension, is barrelled.

How to cite

top

Valdivia, Manuel. "Absolutely convex sets in barrelled spaces." Annales de l'institut Fourier 21.2 (1971): 3-13. <http://eudml.org/doc/74038>.

@article{Valdivia1971,
abstract = {If $\lbrace A_n\rbrace $ is an increasing sequence of absolutely convex sets, in a barrelled space $E$, such that $ \bigcup ^\infty _\{n=1\} A_n = E$, it is deduced some properties of $E$ from the properties of the sets of $\lbrace A_n\rbrace $. It is shown that in a barrelled space any subspace of infinite countable codimension, is barrelled.},
author = {Valdivia, Manuel},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {2},
pages = {3-13},
publisher = {Association des Annales de l'Institut Fourier},
title = {Absolutely convex sets in barrelled spaces},
url = {http://eudml.org/doc/74038},
volume = {21},
year = {1971},
}

TY - JOUR
AU - Valdivia, Manuel
TI - Absolutely convex sets in barrelled spaces
JO - Annales de l'institut Fourier
PY - 1971
PB - Association des Annales de l'Institut Fourier
VL - 21
IS - 2
SP - 3
EP - 13
AB - If $\lbrace A_n\rbrace $ is an increasing sequence of absolutely convex sets, in a barrelled space $E$, such that $ \bigcup ^\infty _{n=1} A_n = E$, it is deduced some properties of $E$ from the properties of the sets of $\lbrace A_n\rbrace $. It is shown that in a barrelled space any subspace of infinite countable codimension, is barrelled.
LA - eng
UR - http://eudml.org/doc/74038
ER -

References

top
  1. [1] I. AMEMIYA und Y. KOMURA, Uber nicht-vollständige Montelräume. Math. Annalen. 177, 273-277, (1968). Zbl0157.43903MR38 #508
  2. [2] M. DE WILDE, Sur les sous-espaces de codimension finie d'un espace linéaire à semi-normes, To appear in Bull. Soc. R. Sciences, Liége. Zbl0187.37201
  3. [3] J. DIEUDONNÉ, Sur les propriétés de permanence de certains espaces vectoriels topologiques, Ann. Soc. Pol. Math. 25, 50-55, (1952). Zbl0049.08202MR15,38b
  4. [4] J. HORVÁTH, Topological Vector Spaces and Distributions. I. Massachussets (1966). Zbl0143.15101MR34 #4863
  5. [5] G. KÖTHE, Die Bilräume abgeschlossener Operatoren, J. für die reine und And. Math., 232, 110-111, (1968). Zbl0157.21003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.