On nonbornological barrelled spaces

Manuel Valdivia

Annales de l'institut Fourier (1972)

  • Volume: 22, Issue: 2, page 27-30
  • ISSN: 0373-0956

Abstract

top
If E is the topological product of a non-countable family of barrelled spaces of non-nulle dimension, there exists an infinite number of non-bornological barrelled subspaces of E . The same result is obtained replacing “barrelled” by “quasi-barrelled”.

How to cite

top

Valdivia, Manuel. "On nonbornological barrelled spaces." Annales de l'institut Fourier 22.2 (1972): 27-30. <http://eudml.org/doc/74079>.

@article{Valdivia1972,
abstract = {If $E$ is the topological product of a non-countable family of barrelled spaces of non-nulle dimension, there exists an infinite number of non-bornological barrelled subspaces of $E$. The same result is obtained replacing “barrelled” by “quasi-barrelled”.},
author = {Valdivia, Manuel},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {2},
pages = {27-30},
publisher = {Association des Annales de l'Institut Fourier},
title = {On nonbornological barrelled spaces},
url = {http://eudml.org/doc/74079},
volume = {22},
year = {1972},
}

TY - JOUR
AU - Valdivia, Manuel
TI - On nonbornological barrelled spaces
JO - Annales de l'institut Fourier
PY - 1972
PB - Association des Annales de l'Institut Fourier
VL - 22
IS - 2
SP - 27
EP - 30
AB - If $E$ is the topological product of a non-countable family of barrelled spaces of non-nulle dimension, there exists an infinite number of non-bornological barrelled subspaces of $E$. The same result is obtained replacing “barrelled” by “quasi-barrelled”.
LA - eng
UR - http://eudml.org/doc/74079
ER -

References

top
  1. [1] N. BOURBAKI, Sur certains spaces vectoriels topologiques, Ann. Inst. Fourier, 5-16 (1950). Zbl0042.35302MR13,137d
  2. [2] J. DIEUDONNÉ, Recent development in the theory of locally convex spaces, Bull. Amer. Math. Soc., 59, 495-512 (1953). Zbl0053.25701MR15,963a
  3. [3] J. DIEUDONNÉ, Sur les propriétés de permanence de certains espaces vectoriels topologiques, Ann. Soc. Polon. Math., 25, 50-55 (1952). Zbl0049.08202MR15,38b
  4. [4] Y. KOMURA, Some examples on linear topological spaces, Math. Ann., 153, 150-162 (1964). Zbl0149.33604MR32 #2884
  5. [5] L. NACHBIN, Topological vector spaces of continuous functions, Proc. Nat. Acad. Sci., USA, 40, 471-474 (1954). Zbl0055.09803MR16,156h
  6. [6] T. SHIROTA, On locally convex vector spaces of continuous functions, Proc. Jap. Acad., 30, 294-298 (1954). Zbl0057.33801MR16,275d

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.