Homogeneous self dual cones versus Jordan algebras. The theory revisited
Annales de l'institut Fourier (1978)
- Volume: 28, Issue: 1, page 27-67
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBellissard, Jean, and Iochum, B.. "Homogeneous self dual cones versus Jordan algebras. The theory revisited." Annales de l'institut Fourier 28.1 (1978): 27-67. <http://eudml.org/doc/74348>.
@article{Bellissard1978,
abstract = {Let $\{\frak M\}$ be a Jordan-Banach algebra with identity 1, whose norm satisfies:(i) $\Vert ab\Vert \le \Vert a\Vert \ \Vert b\Vert $, $a,b \in \{\frak M\}$(ii) $\Vert a^2\Vert = \Vert a\Vert ^2$(iii) $\Vert a^2\Vert \le \Vert a^2 + b^2\Vert $.$\{\frak M\}$ is called a JB algebra (E.M. Alfsen, F.W. Shultz and E. Stormer, Oslo preprint (1976)). The set $\{\frak M\}^+$ of squares in $\{\frak M\}$ is a closed convex cone. $(\{\frak M\},\{\frak M\}^+,\{\bf 1\})$ is a complete ordered vector space with $\{\bf 1\}$ as a order unit. In addition, we assume $\{\frak M\}$ to be monotone complete (i.e. $\{\frak M\}$ coincides with the bidual $\{\frak M\}^\{**\}$), and that there exists a finite normal faithful trace $\varphi $ on $\{\frak M\}$.Then the completion $\lbrace \{\frak M\}^+\rbrace _\varphi $ of $\{\frak M\}^+$ with respect to the Hilbert structure defined by $\varphi $, is characterized by three properties: self duality, homogeneity (in the sense of A. Connes, Ann. Inst. Fourier, Grenoble, 24, 4 (1974), 121–155) and existence of a trace vector.},
author = {Bellissard, Jean, Iochum, B.},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {1},
pages = {27-67},
publisher = {Association des Annales de l'Institut Fourier},
title = {Homogeneous self dual cones versus Jordan algebras. The theory revisited},
url = {http://eudml.org/doc/74348},
volume = {28},
year = {1978},
}
TY - JOUR
AU - Bellissard, Jean
AU - Iochum, B.
TI - Homogeneous self dual cones versus Jordan algebras. The theory revisited
JO - Annales de l'institut Fourier
PY - 1978
PB - Association des Annales de l'Institut Fourier
VL - 28
IS - 1
SP - 27
EP - 67
AB - Let ${\frak M}$ be a Jordan-Banach algebra with identity 1, whose norm satisfies:(i) $\Vert ab\Vert \le \Vert a\Vert \ \Vert b\Vert $, $a,b \in {\frak M}$(ii) $\Vert a^2\Vert = \Vert a\Vert ^2$(iii) $\Vert a^2\Vert \le \Vert a^2 + b^2\Vert $.${\frak M}$ is called a JB algebra (E.M. Alfsen, F.W. Shultz and E. Stormer, Oslo preprint (1976)). The set ${\frak M}^+$ of squares in ${\frak M}$ is a closed convex cone. $({\frak M},{\frak M}^+,{\bf 1})$ is a complete ordered vector space with ${\bf 1}$ as a order unit. In addition, we assume ${\frak M}$ to be monotone complete (i.e. ${\frak M}$ coincides with the bidual ${\frak M}^{**}$), and that there exists a finite normal faithful trace $\varphi $ on ${\frak M}$.Then the completion $\lbrace {\frak M}^+\rbrace _\varphi $ of ${\frak M}^+$ with respect to the Hilbert structure defined by $\varphi $, is characterized by three properties: self duality, homogeneity (in the sense of A. Connes, Ann. Inst. Fourier, Grenoble, 24, 4 (1974), 121–155) and existence of a trace vector.
LA - eng
UR - http://eudml.org/doc/74348
ER -
References
top- [1]M. AJLANI, Les cônes autopolaires en dimension finie, Séminaire Choquet 1974/1975, n° 18. Zbl0344.46024
- [2]A.A. ALBERT and L.J. PAIGE, On a homomorphism property of certain Jordan algebras, Trans. Amer. Math. Soc., 93 (1959), 20-29. Zbl0089.02001MR21 #7240
- [3]E.M. ALFSEN, Compact convex sets and boundary integrals, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 57 Springer Verlag, 1971. Zbl0209.42601MR56 #3615
- [4]E.M. ALFSEN and T.B. ANDERSEN, Split faces of compact convex sets, Proc. London Math. Soc., 21 (1970), 415-442. Zbl0207.12204MR44 #2012
- [5]E.M. ALFSEN and T.B. ANDERSEN, On the concept of center in A(K), J. London Math. Soc., 4 (1972), 411-417. Zbl0232.46016MR45 #9096
- [6]E.M. ALFSEN and F.W. SHULTZ, a) Non commutative spectral theory for affine function spaces on convex sets, Mem. Amer. Math. Soc. Vol. 6, n° 172 (1976). b) State space of Jordan algebras, Oslo preprint (1976). Zbl0337.46013MR54 #943
- [7]E.M. ALFSEN, F.W. SHULTZ and E. STØRMER, A Guelfand-Naimark theorem for Jordan algebras, Oslo preprint (1975).
- [8]H. ARAKI, Some properties of modular conjugation operator of von Neumann algebras and a non commutative Radon-Nykodim theorem with a chain rule, Pacific Journ. Math. 50, n° 2 (1974), 309-354. Zbl0287.46074MR50 #2929
- [9]G.P. BARKER, The lattice of faces of a finite dimensional cone, Linear Alg. and its Appl., 7 (1973), 71-82. Zbl0249.15010MR47 #1634
- [10]G.P. BARKER and J. FORAN, Self dual cones in euclidean spaces, to appear in Linear Alg. and its Appl. Zbl0319.15012
- [11]J. BELLISSARD, B. IOCHUM and R. LIMA, Cônes autopolaires homogènes et facialement homogènes, C.R. Acad. Sci. Paris, 282 (1976), 1363-1365. Zbl0333.17008MR55 #1047
- [12]G. BIRKHOFF, Lattice theory, 3rd ed., New York 1961. Zbl0126.03801MR23 #A815
- [13]W. BÖS, A classification for self dual cones in Hilbert spaces, Osnabrück preprint 1976. Zbl0385.46011
- [14]W. BÖS, Direct integrals of self dual cones and standard forms of von Neumann algebras, Inventiones Mathematicae, 37 (1976), 241-251. Zbl0354.46044
- [15]W. BÖS, The structure of finite homogeneous cones and Jordan algebras, Osnabrück preprint, July 1976.
- [16] H. BRAUN and M. KOECHER, Jordan algebren, Springer Verlag, Berlin 1966. Zbl0145.26001MR34 #4310
- [17] H. BREZIS, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Amsterdam, North-Holland Pub. 1973. Zbl0252.47055MR50 #1060
- [18] A. CONNES, Groupe modulaire d'une algèbre de von Neumann, C.R. Acad. Sci. Paris, 274 (1972), 1923-1926. Zbl0245.46091MR46 #2443
- [19] A. CONNES, Caractérisation des espaces vectoriels ordonnés sous-jacents aux algèbres de von Neumann, Ann. Inst. Fourier, Grenoble, 24, 4 (1974), 121-155. Zbl0287.46078MR51 #13705
- [20] J. DIXMIER, Les algèbres d'opérateurs dans l'espace hilbertien, Gauthiers-Villars, Paris 1969. Zbl0175.43801
- [21] G. EFFROS and E. STØRMER, Jordan algebras of self-adjoint operators, Trans. Amer. Math. Soc., 127 (1967), 313-316. Zbl0171.11502MR34 #6550
- [22] H. FREUDENTHAL, Teilweise geordnete Moduln, Proc. Acad. Sci. Amsterdam, 39 (1936), 641-651. Zbl0014.31302JFM62.0091.01
- [23] H. FREUDENTHAL, Oktaven, Ausnahmegruppen und Oktavengeometrie, Math. Inst. der Rijksuniversitet te Utrecht 1951, M.R. (13,433). Zbl0056.25905
- [24] M. GUYOT, Private communication.
- [25] U. HAAGERUP, The standard form of von Neumann algebras, Math. Scand., 37 (1975), 271-283. Zbl0304.46044MR53 #11387
- [26] E. HAYNSWORTH and A.J. HOFFMAN, Two remarks on copositive matrices, Linear Alg. and its Appl., 2 (1969), 387-392. Zbl0185.08004MR40 #1411
- [27] B. IOCHUM, Cônes autopolaires dans les espaces de Hilbert, Thèse de 3ème cycle, Marseille, 1975.
- [28] N. JACOBSON, Structure and representations of Jordan algebras, Amer. Math. Soc. Pub., 39 Providence, 1968. Zbl0218.17010MR40 #4330
- [29] G. JANSSEN, Formal-reelle Jordanalgebren unendlicher Dimension und verallgemeinerte Positivitätsbereiche, Journ. reine u. angew. Math., 249 (1971), 143-200. Zbl0219.17009MR54 #12846
- [30] G. JANSSEN, Reelle Jordanalgebren mit endlicher Spur, Manuscripta Math., 13 (1974), 237-273. Zbl0291.17011MR50 #9991
- [31] G. JANSSEN, Die Struktur endlicher schwach abgeschlossener Jordan Algebren, Stetige Algebren : Manuscripta Math., 16 (1975), 277-305 ; Diskrete Jordan Algebren : Manuscripta Math., 16 (1975), 307-332. Zbl0318.17014MR51 #13710b
- [32] G. JANSSEN, Die Verbandstheoretische Struktur der Positiven Ordnungsideale von Positivitätsbereichen, Preprint.
- [33] P. JORDAN, J. VON NEUMANN and E. WIGNER, On an algebraic generalization of the quantum mechanical formalism, Ann. of Math., 36 (1934), 29-64. Zbl0008.42103JFM60.0902.02
- [34] R.V. KADISON, Isometries of operator algebras, Ann, of Math., 54 (1951), 325-338. Zbl0045.06201MR13,256a
- [35] S. KAKUTANI, Concrete representation of abstract (M)-spaces. (A characterization of the space of continuous functions), Ann. of Math., 42 (1941), 994-1024. Zbl0060.26604
- [36] S. KAKUTANI, Concrete representation of abstract (L)-spaces and the mean ergodic theorem, Ann. of Math., 42 (1941), 523-537. Zbl0027.11102MR2,318dJFM67.0419.01
- [37] M. KOECHER, Positivitätsbereiche im Rn, Amer. Journ. of Math., 79 (1953), 575-596. Zbl0078.01205MR19,867g
- [38] J.L. KOSZUL, Trajectoires convexes de groupes affines unimodulaires, Essays on Topology and Related Topics, Mémoires dédiés à G. de Rahm, Springer Verlag, Berlin 1970. Zbl0213.36002MR44 #363
- [39] W. LUXEMBURG and A.C. ZAANEN, Riesz spaces, North Holland Publ. Amsterdam 1971. Zbl0231.46014MR58 #23483
- [40] J.T. MARTI, Topological representation of Abstract Lp-spaces, Math. Ann., 185 (1970), 315-321. Zbl0182.45501MR41 #5933
- [41] J.J. MOREAU, Décomposition orthogonale d'un espace hilbertien selon deux cônes mutuellement polaires, C.R. Acad. Sci. Paris, 255 (1962), 238-240. Zbl0109.08105MR25 #3346
- [42] R.C. PENNEY, Self dual cones in Hilbert space, Journ. Funct. Ana., 21 (1976), 305-315. Zbl0322.46015MR53 #6295
- [43] F. RIESZ and B. SZ.NAGY, Leçons d'analyse fonctionnelle, Budapest 1953. Zbl0051.08403MR15,132d
- [44] O.S. ROTHAUS, The construction of homogeneous convex cones, Ann. Math., 83 (1966), 358-376. Correction : Ann. Math., 87 (1968), 399. Zbl0138.43302MR34 #2029
- [45]O.S. ROTHAUS, Domains of positivity, Abh. Math. Semin. Univ. Hamburg, 24 (1960), 189-235. Zbl0096.27903MR22 #12540
- [46]S. SAKAI, C*-algebras and W*-algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol 60, Berlin 1971. Zbl0219.46042MR56 #1082
- [47]H. SCHNEIDER and M. VIDYASAGAR, Cross-positive matrices, Siam J. Numer. Anal., 7 (1970), 508-519. Zbl0245.15008MR43 #3283
- [48]I.E. SEGAL, Postulates for general quantum mechanics, Ann. of Math., 48 (1947), 930-948. Zbl0034.06602MR9,241b
- [49]H.H. SHAEFER, Topological Vector spaces, Graduate Texts in Mathematics, Springer Verlag, New York 1971. Zbl0217.16002
- [50]E. STØRMER, On the Jordan structure of C*-algebras, Trans. Amer. Math. Soc., 120 (1966), 438-447. Zbl0136.11401
- [51]E. STØRMER, Jordan algebras of type I, Acta Math., 115 (1966), 165-184. Zbl0139.30502MR35 #754
- [52]E. STØRMER, Irredictible Jordan algebras of self adjoint operators, Trans. Amer. Math. Soc., 130 (1968), 153-166. Zbl0164.44602
- [53] M. TAKESAKI, Tomita's theory of modular Hilbert algebras and its applications, Lecture notes in Math. n° 128, Springer Verlag, Berlin 1970. Zbl0193.42502MR42 #5061
- [54]D. TOPPING, Jordan algebras of self adjoint operators, Mem. Amer. Math. Soc., n° 53 (1965). Zbl0137.10203MR32 #8198
- [55]E.B. VINBERG, The theory of convex homogeneous cones, Trans. Moscow Math. Soc., 12 (1963), 340-403. Zbl0138.43301
- [56]E.B. VINBERG, The structure of groups of automorphisms of a homogeneous convex cone, Trans. Moscow Math. Soc., 14 (1965), 63-93. Zbl0311.17008MR34 #1457
- [57]W. WILS, The ideal center of partially ordered vector spaces, Acta Mathematica, 127 (1971), 41-77. Zbl0224.46010MR57 #3819
- [58]S.L. WORONOWICZ, On the purification of factor states, Commun. Math. Phys., 28 (1972), 221-235. Zbl0244.46075MR46 #9755
- [59]S.L. WORONOWICZ, Self polar forms and their applications to the C*-algebra theory, Reports on Math. Phys., 6 (1974), 487-495. Zbl0343.46037MR54 #13584
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.