Homogeneous self dual cones versus Jordan algebras. The theory revisited

Jean Bellissard; B. Iochum

Annales de l'institut Fourier (1978)

  • Volume: 28, Issue: 1, page 27-67
  • ISSN: 0373-0956

Abstract

top
Let 𝔐 be a Jordan-Banach algebra with identity 1, whose norm satisfies:(i) a b a b ,    a , b 𝔐 (ii) a 2 = a 2 (iii) a 2 a 2 + b 2 . 𝔐 is called a JB algebra (E.M. Alfsen, F.W. Shultz and E. Stormer, Oslo preprint (1976)). The set 𝔐 + of squares in 𝔐 is a closed convex cone. ( 𝔐 , 𝔐 + , 1 ) is a complete ordered vector space with 1 as a order unit. In addition, we assume 𝔐 to be monotone complete (i.e. 𝔐 coincides with the bidual 𝔐 * * ), and that there exists a finite normal faithful trace φ on 𝔐 .Then the completion { 𝔐 + } φ of 𝔐 + with respect to the Hilbert structure defined by φ , is characterized by three properties: self duality, homogeneity (in the sense of A. Connes, Ann. Inst. Fourier, Grenoble, 24, 4 (1974), 121–155) and existence of a trace vector.

How to cite

top

Bellissard, Jean, and Iochum, B.. "Homogeneous self dual cones versus Jordan algebras. The theory revisited." Annales de l'institut Fourier 28.1 (1978): 27-67. <http://eudml.org/doc/74348>.

@article{Bellissard1978,
abstract = {Let $\{\frak M\}$ be a Jordan-Banach algebra with identity 1, whose norm satisfies:(i) $\Vert ab\Vert \le \Vert a\Vert \ \Vert b\Vert $,   $a,b \in \{\frak M\}$(ii) $\Vert a^2\Vert = \Vert a\Vert ^2$(iii) $\Vert a^2\Vert \le \Vert a^2 + b^2\Vert $.$\{\frak M\}$ is called a JB algebra (E.M. Alfsen, F.W. Shultz and E. Stormer, Oslo preprint (1976)). The set $\{\frak M\}^+$ of squares in $\{\frak M\}$ is a closed convex cone. $(\{\frak M\},\{\frak M\}^+,\{\bf 1\})$ is a complete ordered vector space with $\{\bf 1\}$ as a order unit. In addition, we assume $\{\frak M\}$ to be monotone complete (i.e. $\{\frak M\}$ coincides with the bidual $\{\frak M\}^\{**\}$), and that there exists a finite normal faithful trace $\varphi $ on $\{\frak M\}$.Then the completion $\lbrace \{\frak M\}^+\rbrace _\varphi $ of $\{\frak M\}^+$ with respect to the Hilbert structure defined by $\varphi $, is characterized by three properties: self duality, homogeneity (in the sense of A. Connes, Ann. Inst. Fourier, Grenoble, 24, 4 (1974), 121–155) and existence of a trace vector.},
author = {Bellissard, Jean, Iochum, B.},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {1},
pages = {27-67},
publisher = {Association des Annales de l'Institut Fourier},
title = {Homogeneous self dual cones versus Jordan algebras. The theory revisited},
url = {http://eudml.org/doc/74348},
volume = {28},
year = {1978},
}

TY - JOUR
AU - Bellissard, Jean
AU - Iochum, B.
TI - Homogeneous self dual cones versus Jordan algebras. The theory revisited
JO - Annales de l'institut Fourier
PY - 1978
PB - Association des Annales de l'Institut Fourier
VL - 28
IS - 1
SP - 27
EP - 67
AB - Let ${\frak M}$ be a Jordan-Banach algebra with identity 1, whose norm satisfies:(i) $\Vert ab\Vert \le \Vert a\Vert \ \Vert b\Vert $,   $a,b \in {\frak M}$(ii) $\Vert a^2\Vert = \Vert a\Vert ^2$(iii) $\Vert a^2\Vert \le \Vert a^2 + b^2\Vert $.${\frak M}$ is called a JB algebra (E.M. Alfsen, F.W. Shultz and E. Stormer, Oslo preprint (1976)). The set ${\frak M}^+$ of squares in ${\frak M}$ is a closed convex cone. $({\frak M},{\frak M}^+,{\bf 1})$ is a complete ordered vector space with ${\bf 1}$ as a order unit. In addition, we assume ${\frak M}$ to be monotone complete (i.e. ${\frak M}$ coincides with the bidual ${\frak M}^{**}$), and that there exists a finite normal faithful trace $\varphi $ on ${\frak M}$.Then the completion $\lbrace {\frak M}^+\rbrace _\varphi $ of ${\frak M}^+$ with respect to the Hilbert structure defined by $\varphi $, is characterized by three properties: self duality, homogeneity (in the sense of A. Connes, Ann. Inst. Fourier, Grenoble, 24, 4 (1974), 121–155) and existence of a trace vector.
LA - eng
UR - http://eudml.org/doc/74348
ER -

References

top
  1. [1]M. AJLANI, Les cônes autopolaires en dimension finie, Séminaire Choquet 1974/1975, n° 18. Zbl0344.46024
  2. [2]A.A. ALBERT and L.J. PAIGE, On a homomorphism property of certain Jordan algebras, Trans. Amer. Math. Soc., 93 (1959), 20-29. Zbl0089.02001MR21 #7240
  3. [3]E.M. ALFSEN, Compact convex sets and boundary integrals, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 57 Springer Verlag, 1971. Zbl0209.42601MR56 #3615
  4. [4]E.M. ALFSEN and T.B. ANDERSEN, Split faces of compact convex sets, Proc. London Math. Soc., 21 (1970), 415-442. Zbl0207.12204MR44 #2012
  5. [5]E.M. ALFSEN and T.B. ANDERSEN, On the concept of center in A(K), J. London Math. Soc., 4 (1972), 411-417. Zbl0232.46016MR45 #9096
  6. [6]E.M. ALFSEN and F.W. SHULTZ, a) Non commutative spectral theory for affine function spaces on convex sets, Mem. Amer. Math. Soc. Vol. 6, n° 172 (1976). b) State space of Jordan algebras, Oslo preprint (1976). Zbl0337.46013MR54 #943
  7. [7]E.M. ALFSEN, F.W. SHULTZ and E. STØRMER, A Guelfand-Naimark theorem for Jordan algebras, Oslo preprint (1975). 
  8. [8]H. ARAKI, Some properties of modular conjugation operator of von Neumann algebras and a non commutative Radon-Nykodim theorem with a chain rule, Pacific Journ. Math. 50, n° 2 (1974), 309-354. Zbl0287.46074MR50 #2929
  9. [9]G.P. BARKER, The lattice of faces of a finite dimensional cone, Linear Alg. and its Appl., 7 (1973), 71-82. Zbl0249.15010MR47 #1634
  10. [10]G.P. BARKER and J. FORAN, Self dual cones in euclidean spaces, to appear in Linear Alg. and its Appl. Zbl0319.15012
  11. [11]J. BELLISSARD, B. IOCHUM and R. LIMA, Cônes autopolaires homogènes et facialement homogènes, C.R. Acad. Sci. Paris, 282 (1976), 1363-1365. Zbl0333.17008MR55 #1047
  12. [12]G. BIRKHOFF, Lattice theory, 3rd ed., New York 1961. Zbl0126.03801MR23 #A815
  13. [13]W. BÖS, A classification for self dual cones in Hilbert spaces, Osnabrück preprint 1976. Zbl0385.46011
  14. [14]W. BÖS, Direct integrals of self dual cones and standard forms of von Neumann algebras, Inventiones Mathematicae, 37 (1976), 241-251. Zbl0354.46044
  15. [15]W. BÖS, The structure of finite homogeneous cones and Jordan algebras, Osnabrück preprint, July 1976. 
  16. [16] H. BRAUN and M. KOECHER, Jordan algebren, Springer Verlag, Berlin 1966. Zbl0145.26001MR34 #4310
  17. [17] H. BREZIS, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Amsterdam, North-Holland Pub. 1973. Zbl0252.47055MR50 #1060
  18. [18] A. CONNES, Groupe modulaire d'une algèbre de von Neumann, C.R. Acad. Sci. Paris, 274 (1972), 1923-1926. Zbl0245.46091MR46 #2443
  19. [19] A. CONNES, Caractérisation des espaces vectoriels ordonnés sous-jacents aux algèbres de von Neumann, Ann. Inst. Fourier, Grenoble, 24, 4 (1974), 121-155. Zbl0287.46078MR51 #13705
  20. [20] J. DIXMIER, Les algèbres d'opérateurs dans l'espace hilbertien, Gauthiers-Villars, Paris 1969. Zbl0175.43801
  21. [21] G. EFFROS and E. STØRMER, Jordan algebras of self-adjoint operators, Trans. Amer. Math. Soc., 127 (1967), 313-316. Zbl0171.11502MR34 #6550
  22. [22] H. FREUDENTHAL, Teilweise geordnete Moduln, Proc. Acad. Sci. Amsterdam, 39 (1936), 641-651. Zbl0014.31302JFM62.0091.01
  23. [23] H. FREUDENTHAL, Oktaven, Ausnahmegruppen und Oktavengeometrie, Math. Inst. der Rijksuniversitet te Utrecht 1951, M.R. (13,433). Zbl0056.25905
  24. [24] M. GUYOT, Private communication. 
  25. [25] U. HAAGERUP, The standard form of von Neumann algebras, Math. Scand., 37 (1975), 271-283. Zbl0304.46044MR53 #11387
  26. [26] E. HAYNSWORTH and A.J. HOFFMAN, Two remarks on copositive matrices, Linear Alg. and its Appl., 2 (1969), 387-392. Zbl0185.08004MR40 #1411
  27. [27] B. IOCHUM, Cônes autopolaires dans les espaces de Hilbert, Thèse de 3ème cycle, Marseille, 1975. 
  28. [28] N. JACOBSON, Structure and representations of Jordan algebras, Amer. Math. Soc. Pub., 39 Providence, 1968. Zbl0218.17010MR40 #4330
  29. [29] G. JANSSEN, Formal-reelle Jordanalgebren unendlicher Dimension und verallgemeinerte Positivitätsbereiche, Journ. reine u. angew. Math., 249 (1971), 143-200. Zbl0219.17009MR54 #12846
  30. [30] G. JANSSEN, Reelle Jordanalgebren mit endlicher Spur, Manuscripta Math., 13 (1974), 237-273. Zbl0291.17011MR50 #9991
  31. [31] G. JANSSEN, Die Struktur endlicher schwach abgeschlossener Jordan Algebren, Stetige Algebren : Manuscripta Math., 16 (1975), 277-305 ; Diskrete Jordan Algebren : Manuscripta Math., 16 (1975), 307-332. Zbl0318.17014MR51 #13710b
  32. [32] G. JANSSEN, Die Verbandstheoretische Struktur der Positiven Ordnungsideale von Positivitätsbereichen, Preprint. 
  33. [33] P. JORDAN, J. VON NEUMANN and E. WIGNER, On an algebraic generalization of the quantum mechanical formalism, Ann. of Math., 36 (1934), 29-64. Zbl0008.42103JFM60.0902.02
  34. [34] R.V. KADISON, Isometries of operator algebras, Ann, of Math., 54 (1951), 325-338. Zbl0045.06201MR13,256a
  35. [35] S. KAKUTANI, Concrete representation of abstract (M)-spaces. (A characterization of the space of continuous functions), Ann. of Math., 42 (1941), 994-1024. Zbl0060.26604
  36. [36] S. KAKUTANI, Concrete representation of abstract (L)-spaces and the mean ergodic theorem, Ann. of Math., 42 (1941), 523-537. Zbl0027.11102MR2,318dJFM67.0419.01
  37. [37] M. KOECHER, Positivitätsbereiche im Rn, Amer. Journ. of Math., 79 (1953), 575-596. Zbl0078.01205MR19,867g
  38. [38] J.L. KOSZUL, Trajectoires convexes de groupes affines unimodulaires, Essays on Topology and Related Topics, Mémoires dédiés à G. de Rahm, Springer Verlag, Berlin 1970. Zbl0213.36002MR44 #363
  39. [39] W. LUXEMBURG and A.C. ZAANEN, Riesz spaces, North Holland Publ. Amsterdam 1971. Zbl0231.46014MR58 #23483
  40. [40] J.T. MARTI, Topological representation of Abstract Lp-spaces, Math. Ann., 185 (1970), 315-321. Zbl0182.45501MR41 #5933
  41. [41] J.J. MOREAU, Décomposition orthogonale d'un espace hilbertien selon deux cônes mutuellement polaires, C.R. Acad. Sci. Paris, 255 (1962), 238-240. Zbl0109.08105MR25 #3346
  42. [42] R.C. PENNEY, Self dual cones in Hilbert space, Journ. Funct. Ana., 21 (1976), 305-315. Zbl0322.46015MR53 #6295
  43. [43] F. RIESZ and B. SZ.NAGY, Leçons d'analyse fonctionnelle, Budapest 1953. Zbl0051.08403MR15,132d
  44. [44] O.S. ROTHAUS, The construction of homogeneous convex cones, Ann. Math., 83 (1966), 358-376. Correction : Ann. Math., 87 (1968), 399. Zbl0138.43302MR34 #2029
  45. [45]O.S. ROTHAUS, Domains of positivity, Abh. Math. Semin. Univ. Hamburg, 24 (1960), 189-235. Zbl0096.27903MR22 #12540
  46. [46]S. SAKAI, C*-algebras and W*-algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol 60, Berlin 1971. Zbl0219.46042MR56 #1082
  47. [47]H. SCHNEIDER and M. VIDYASAGAR, Cross-positive matrices, Siam J. Numer. Anal., 7 (1970), 508-519. Zbl0245.15008MR43 #3283
  48. [48]I.E. SEGAL, Postulates for general quantum mechanics, Ann. of Math., 48 (1947), 930-948. Zbl0034.06602MR9,241b
  49. [49]H.H. SHAEFER, Topological Vector spaces, Graduate Texts in Mathematics, Springer Verlag, New York 1971. Zbl0217.16002
  50. [50]E. STØRMER, On the Jordan structure of C*-algebras, Trans. Amer. Math. Soc., 120 (1966), 438-447. Zbl0136.11401
  51. [51]E. STØRMER, Jordan algebras of type I, Acta Math., 115 (1966), 165-184. Zbl0139.30502MR35 #754
  52. [52]E. STØRMER, Irredictible Jordan algebras of self adjoint operators, Trans. Amer. Math. Soc., 130 (1968), 153-166. Zbl0164.44602
  53. [53] M. TAKESAKI, Tomita's theory of modular Hilbert algebras and its applications, Lecture notes in Math. n° 128, Springer Verlag, Berlin 1970. Zbl0193.42502MR42 #5061
  54. [54]D. TOPPING, Jordan algebras of self adjoint operators, Mem. Amer. Math. Soc., n° 53 (1965). Zbl0137.10203MR32 #8198
  55. [55]E.B. VINBERG, The theory of convex homogeneous cones, Trans. Moscow Math. Soc., 12 (1963), 340-403. Zbl0138.43301
  56. [56]E.B. VINBERG, The structure of groups of automorphisms of a homogeneous convex cone, Trans. Moscow Math. Soc., 14 (1965), 63-93. Zbl0311.17008MR34 #1457
  57. [57]W. WILS, The ideal center of partially ordered vector spaces, Acta Mathematica, 127 (1971), 41-77. Zbl0224.46010MR57 #3819
  58. [58]S.L. WORONOWICZ, On the purification of factor states, Commun. Math. Phys., 28 (1972), 221-235. Zbl0244.46075MR46 #9755
  59. [59]S.L. WORONOWICZ, Self polar forms and their applications to the C*-algebra theory, Reports on Math. Phys., 6 (1974), 487-495. Zbl0343.46037MR54 #13584

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.