A result on extension of C.R. functions
Makhlouf Derridj; John Erik Fornaess
Annales de l'institut Fourier (1983)
- Volume: 33, Issue: 3, page 113-120
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDerridj, Makhlouf, and Fornaess, John Erik. "A result on extension of C.R. functions." Annales de l'institut Fourier 33.3 (1983): 113-120. <http://eudml.org/doc/74592>.
@article{Derridj1983,
abstract = {Let $\Omega $ an open set in $\{\bf C\}^4$ near $z_0\in \partial \Omega $, $\lambda $ a suitable holomorphic function near $z_0$. If we know that we can solve the following problem (see [M. Derridj, Annali. Sci. Norm. Pisa, Série IV, vol. IX (1981)]) : $\bar\{\partial \}u=\lambda f$, ($f$ is a $(0,1)$ form, $\bar\{\partial \}$ closed in $U(z_0)$ in $U(z_0)$ with supp$(u)\subset \bar\{\Omega \}\cap U(z_0)$, then we deduce an extension result for $C.R.$ functions on $\partial \Omega \cap U(z_0)$, as holomorphic fonctions in $\Omega \cap V(z_0)$.},
author = {Derridj, Makhlouf, Fornaess, John Erik},
journal = {Annales de l'institut Fourier},
keywords = {extension of C. R. functions},
language = {eng},
number = {3},
pages = {113-120},
publisher = {Association des Annales de l'Institut Fourier},
title = {A result on extension of C.R. functions},
url = {http://eudml.org/doc/74592},
volume = {33},
year = {1983},
}
TY - JOUR
AU - Derridj, Makhlouf
AU - Fornaess, John Erik
TI - A result on extension of C.R. functions
JO - Annales de l'institut Fourier
PY - 1983
PB - Association des Annales de l'Institut Fourier
VL - 33
IS - 3
SP - 113
EP - 120
AB - Let $\Omega $ an open set in ${\bf C}^4$ near $z_0\in \partial \Omega $, $\lambda $ a suitable holomorphic function near $z_0$. If we know that we can solve the following problem (see [M. Derridj, Annali. Sci. Norm. Pisa, Série IV, vol. IX (1981)]) : $\bar{\partial }u=\lambda f$, ($f$ is a $(0,1)$ form, $\bar{\partial }$ closed in $U(z_0)$ in $U(z_0)$ with supp$(u)\subset \bar{\Omega }\cap U(z_0)$, then we deduce an extension result for $C.R.$ functions on $\partial \Omega \cap U(z_0)$, as holomorphic fonctions in $\Omega \cap V(z_0)$.
LA - eng
KW - extension of C. R. functions
UR - http://eudml.org/doc/74592
ER -
References
top- [1] A. ANDREOTTI and C.D. HILL, E.E. convexity and the H. Lewy problem. Part I : Reduction to vanishing theorems, Ann. Scuola Normale Sup. di Pisa, 26 (1972). Zbl0256.32007
- [2] A. ANDREOTTI and E. VESENTINI, Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Publ. IHES, vol. 24-25. Zbl0138.06604
- [3] M.S. BAOUENDI and F. TREVES, A property of the functions and distributions annihilated by a locally integrable system of complex vector fields, Ann. Math., 113 (1981). Zbl0491.35036MR82f:35057
- [4] E. BEDFORD and J.E. FORNAESS, Local extension of C.R. function from weakly pseudoconvex boundaries, Michigan Math. J., 25. Zbl0401.32007MR80c:32014
- [5] A. BOGGES, C.R. extendability near a point where the first leviform vanishes, Duke Math. J., 43 (3). Zbl0509.32006
- [6] M. DERRIDJ, Inégalités de Carleman et extension locale des fonctions holomorphes, Annali. Sci. Norm. Pisa, Serie IV vol. IX (1981). Zbl0548.32013
- [7] C.D. HILL and TAÏANI, Families of analytic discs in Cn with boundaries on a prescribed C.R. submanifold, Ann. Scuola Norm. Pisa, 4-5 (1978). Zbl0399.32008
- [8] L. HÖRMANDER, Introduction to complex analysis in several variables, van Nostrand. Zbl0138.06203
- [9] L. HÖRMANDER, L²-estimates and existence theorems for the ∂-operator, Acta Math., 113 (1965). Zbl0158.11002MR31 #3691
- [10] J.J. KOHN and H. ROSSI, On the extension of holomorphic functions from the boundary of a complex manifold, Ann. Math., 81 (1965). Zbl0166.33802MR31 #1399
- [11] H. LEWY, On the local character... Ann. Math., 64 (1956).
- [12] R. NIRENBERG, On the Lewy extension phenomenon, Trans. Amer. Math. Soc., 168 (1972). Zbl0241.32006MR46 #392
- [13] R.O. WELLS, On the local holomorphic hull... Comm. P.A.M., vol. XIX (1966). Zbl0142.33901
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.