Fine and quasi connectedness in nonlinear potential theory
Annales de l'institut Fourier (1985)
- Volume: 35, Issue: 1, page 57-73
 - ISSN: 0373-0956
 
Access Full Article
topAbstract
topHow to cite
topAdams, David R., and Lewis, John L.. "Fine and quasi connectedness in nonlinear potential theory." Annales de l'institut Fourier 35.1 (1985): 57-73. <http://eudml.org/doc/74668>.
@article{Adams1985,
	abstract = {If $B_\{\alpha ,p\}$ denotes the Bessel capacity of subsets of Euclidean $n$-space, $\alpha >0$, $1< p< \infty $, naturally associated with the space of Bessel potentials of $L^p$-functions, then our principal result is the estimate: for $1< \alpha p\le n$, there is a constant $C = C(\alpha ,p,n)$ such that for any set $E$\begin\{\} \min \lbrace B\_\{\alpha ,p\}(E\cap Q),B\_\{\alpha ,p\}(E^ c\cap Q)\rbrace \le C\cdot B\_\{\alpha ,p\}(Q\cap \partial \_ fE) \end\{\}for all open cubes $Q$ in $n$-space. Here $\partial _f E$ is the boundary of the $E$ in the $(\alpha ,p)$-fine topology i.e. the smallest topology on $c$-space that makes the associated $(\alpha ,p)$-linear potentials continuous there. As a consequence, we deduce that for $\alpha p>1$, open connected sets are connected in the $(\alpha ,p)$-quasi topology (i.e. the topology generated by the set function $B_\{\alpha ,p\}$ in the sense of Fuglede), and the $(\alpha ,p)$-finely open $(\alpha ,p)$-finely connected sets are arcwise connected. Our methods rely on the Kellog-Choquet properties of the capacities $B_\{\alpha ,p\}$ and aspects of geometric measure theory. The classical Newtonian case corresponds to the case $\alpha =1$, $p=2$ and $n=3$.},
	author = {Adams, David R., Lewis, John L.},
	journal = {Annales de l'institut Fourier},
	keywords = {nonlinear potential theory; fine topologies; quasi topologies; Bessel capacities; method of balayage},
	language = {eng},
	number = {1},
	pages = {57-73},
	publisher = {Association des Annales de l'Institut Fourier},
	title = {Fine and quasi connectedness in nonlinear potential theory},
	url = {http://eudml.org/doc/74668},
	volume = {35},
	year = {1985},
}
TY  - JOUR
AU  - Adams, David R.
AU  - Lewis, John L.
TI  - Fine and quasi connectedness in nonlinear potential theory
JO  - Annales de l'institut Fourier
PY  - 1985
PB  - Association des Annales de l'Institut Fourier
VL  - 35
IS  - 1
SP  - 57
EP  - 73
AB  - If $B_{\alpha ,p}$ denotes the Bessel capacity of subsets of Euclidean $n$-space, $\alpha >0$, $1< p< \infty $, naturally associated with the space of Bessel potentials of $L^p$-functions, then our principal result is the estimate: for $1< \alpha p\le n$, there is a constant $C = C(\alpha ,p,n)$ such that for any set $E$\begin{} \min \lbrace B_{\alpha ,p}(E\cap Q),B_{\alpha ,p}(E^ c\cap Q)\rbrace \le C\cdot B_{\alpha ,p}(Q\cap \partial _ fE) \end{}for all open cubes $Q$ in $n$-space. Here $\partial _f E$ is the boundary of the $E$ in the $(\alpha ,p)$-fine topology i.e. the smallest topology on $c$-space that makes the associated $(\alpha ,p)$-linear potentials continuous there. As a consequence, we deduce that for $\alpha p>1$, open connected sets are connected in the $(\alpha ,p)$-quasi topology (i.e. the topology generated by the set function $B_{\alpha ,p}$ in the sense of Fuglede), and the $(\alpha ,p)$-finely open $(\alpha ,p)$-finely connected sets are arcwise connected. Our methods rely on the Kellog-Choquet properties of the capacities $B_{\alpha ,p}$ and aspects of geometric measure theory. The classical Newtonian case corresponds to the case $\alpha =1$, $p=2$ and $n=3$.
LA  - eng
KW  - nonlinear potential theory; fine topologies; quasi topologies; Bessel capacities; method of balayage
UR  - http://eudml.org/doc/74668
ER  - 
References
top- [1] D.R. ADAMS, Traces of potentials. II., Ind. U. Math. J., 22 (1973), 907-918. Zbl0265.46039MR47 #2337
 - [2] D.R. ADAMS, Lectures on Lp-potential theory, Umeå Univ. Reports, no. 2 (1981).
 - [3] D.R. ADAMS and L.I. HEDBERG, Inclusion relations among fine topologies in non-linear potential theory, Ind. U. Math. J., 33 (1984), 117-126. Zbl0545.31011MR85c:31011
 - [4] D.R. ADAMS, and N.G. MEYERS, Thinness and Wiener criteria for non-linear potentials, Ind. U. Math. J., 22 (1972), 169-197. Zbl0244.31012MR47 #5272
 - [5] M. BRELOT, On topologies and boundaries in potential theory, Lecture Notes in Math. 175, Springer-Verlag. Zbl0277.31002MR43 #7654
 - [6] B. DAVIS and J.L. LEWIS, Paths for subharmonic functions, Proc. London Math. Soc., 48 (1984), 401-427. Zbl0541.31001MR85m:31002
 - [7] B. FUGLEDE, Connexion en topologie fine et balayage des mesures, Ann. Inst. Fourier, 21-3 (1971), 227-244. Zbl0208.13802MR49 #9241
 - [8] B. FUGLEDE, The quasi topology associated with a countably subadditive set function, Ann. Inst. Fourier, 21-1 (1971), 123-169. Zbl0197.19401MR44 #391
 - [9] C. FERNSTROM, On the instability of capacity, Ark. Mat., 15 (1971), 241-252. Zbl0372.31003
 - [10] H. FEDERER, Geometric Measure Theory, Springer-Verlag, 1969. Zbl0176.00801MR41 #1976
 - [11] C. GOFFMAN and D. WATERMAN, Approximately continuous transformations, Proc. Amer. Math. Soc., 12 (1961), 116-121. Zbl0096.17103MR22 #11082
 - [12] L.I. HEDBERG, Non-linear potentials and approximation in the mean by analytic functions, Math. Z., 129 (1972), 299-319. Zbl0236.31010MR48 #6430
 - [13] L.I. HEDBERG and T. WOLFF, Thin sets in non-linear potential theory, Ann. Inst. Fourier, 33-4 (1983), 161-187. Zbl0508.31008MR85f:31015
 - [14] T. LYONS, Finely holomorphic functions, J. Func. Anal., 37 (1980), 1-18. Zbl0459.46038MR82d:31011a
 - [15] V. MAZ'YA and V. HAVIN, Non-linear potential theory, Russian Math. Surveys, 27 (1972), 71-148. Zbl0269.31004
 - [16] N.G. MEYERS, A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand., 26 (1970), 255-292. Zbl0242.31006MR43 #3474
 - [17] N.G. MEYERS, Continuity properties of potentials, Duke Math. J., 42 (1975), 157-166. Zbl0334.31004MR51 #3477
 - [18] N.G. MEYERS, Continuity of Bessel potentials, Israel J. Math., 11 (1972), 271-283. Zbl0256.31009MR46 #374
 - [19] J. RIDDER, Uber approximativ statige Funktionen von zwei (und mehreren) Veranderlichen, Fund. Math., 13 (1927), 201-209. Zbl55.0145.01JFM55.0145.01
 
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.