On the polynomial-like behaviour of certain algebraic functions
Charles Feffermann; Raghavan Narasimhan
Annales de l'institut Fourier (1994)
- Volume: 44, Issue: 4, page 1091-1179
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topFeffermann, Charles, and Narasimhan, Raghavan. "On the polynomial-like behaviour of certain algebraic functions." Annales de l'institut Fourier 44.4 (1994): 1091-1179. <http://eudml.org/doc/75091>.
@article{Feffermann1994,
abstract = {Given integers $D>0,\, n>1,\, 0< r< n$ and a constant $C>0$, consider the space of $r$-tuples $\vec\{P\}=(P_1\ldots P_r)$ of real polynomials in $n$ variables of degree $\le D$, whose coefficients are $\le C$ in absolute value, and satisfying $\{\rm det\}\left(\{\partial P_i\over \partial x_i\}(0)\right)_\{1\le i, j\le r\}=1$. We study the family $\lbrace f\vert V\rbrace $ of algebraic functions, where $f$ is a polynomial, and $V=\lbrace \vert x\vert \le \delta , \vec\{P\}(x)=0\rbrace ,\; \delta >0$ being a constant depending only on $n,\, D,\, C$. The main result is a quantitative extension theorem for these functions which is uniform in $\vec\{P\}$. This is used to prove Bernstein-type inequalities which are again uniform with respect to $\vec\{P\}$.The proof is based on some quantitative results on ideals of polynomials and on the theory of semi-algebraic sets.},
author = {Feffermann, Charles, Narasimhan, Raghavan},
journal = {Annales de l'institut Fourier},
keywords = {real polynomials; ideals of polynomials; semi-algebraic sets; Bernstein inequality},
language = {eng},
number = {4},
pages = {1091-1179},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the polynomial-like behaviour of certain algebraic functions},
url = {http://eudml.org/doc/75091},
volume = {44},
year = {1994},
}
TY - JOUR
AU - Feffermann, Charles
AU - Narasimhan, Raghavan
TI - On the polynomial-like behaviour of certain algebraic functions
JO - Annales de l'institut Fourier
PY - 1994
PB - Association des Annales de l'Institut Fourier
VL - 44
IS - 4
SP - 1091
EP - 1179
AB - Given integers $D>0,\, n>1,\, 0< r< n$ and a constant $C>0$, consider the space of $r$-tuples $\vec{P}=(P_1\ldots P_r)$ of real polynomials in $n$ variables of degree $\le D$, whose coefficients are $\le C$ in absolute value, and satisfying ${\rm det}\left({\partial P_i\over \partial x_i}(0)\right)_{1\le i, j\le r}=1$. We study the family $\lbrace f\vert V\rbrace $ of algebraic functions, where $f$ is a polynomial, and $V=\lbrace \vert x\vert \le \delta , \vec{P}(x)=0\rbrace ,\; \delta >0$ being a constant depending only on $n,\, D,\, C$. The main result is a quantitative extension theorem for these functions which is uniform in $\vec{P}$. This is used to prove Bernstein-type inequalities which are again uniform with respect to $\vec{P}$.The proof is based on some quantitative results on ideals of polynomials and on the theory of semi-algebraic sets.
LA - eng
KW - real polynomials; ideals of polynomials; semi-algebraic sets; Bernstein inequality
UR - http://eudml.org/doc/75091
ER -
References
top- [A] F. AMOROSO, The membership problem for smooth ideals, (to appear in Publ. de l'I.H.P., Sém. de théorie des nombres). Zbl0687.13014
- [BCR] J. BOCHNAK, M. COSTE and M.-F. ROY, Géométrie algébrique réelle, Springer, 1987. Zbl0633.14016MR90b:14030
- [BT] C.A. BERENSTEIN and B.A. TAYLOR, On the geometry of interpolating varieties, Sém. Lelong-Skoda (1980-1981), Springer Lecture Notes in Math., vol. 919, 1-25. Zbl0484.32004MR83k:32004
- [BY] C.A. BERENSTEIN and A. YGER, Ideals generated by exponential polynomials, Advances in Math., vol. 60 (1986), 1-80. Zbl0586.32019MR87i:32005
- [C] P.J. COHEN, Decision Procedures for Real and p-adic Fields, Comm. Pure Appl. Math., vol. 22 (1969), 131-151. Zbl0167.01502MR39 #5342
- [FN] C. FEFFERMAN and R. NARASIMHAN, Bernstein's Inequality on Algebraic Curves, Annales de l'Inst. Fourier, vol. 43-5 (1993), 1319-1348. Zbl0842.26013MR95e:32007
- [FS] G.B. FOLLAND and E.M. STEIN, Estimates for the ∂b-complex and analysis on the Heisenberg group, Comm. Pure Appl. Math., vol. 27 (1974), 429-522. Zbl0293.35012MR51 #3719
- [He] G. HERMANN, Die Frage der endlich vielen Schritte in der Theorie der Polynomideale, Math. Annalen, vol. 93 (1926), 736-788. Zbl52.0127.01JFM52.0127.01
- [H] L. HÖRMANDER, An Introduction to Complex Analysis in Several Variables, 2nd edition, Amsterdam, North-Holland, 1973. Zbl0271.32001
- [KT] J.J. KELLEHER and B.A. TAYLOR, Finitely generated ideals in rings of analytic functions, Math. Annalen, vol. 193 (1971), 225-237. Zbl0207.12906MR46 #2077
- [M] D. MUMFORD, Algebraic Geometry I. Complex Projective Varieties, Springer, 1976. Zbl0356.14002
- [NSW] A. NAGEL, E.M. STEIN and S. WAINGER, Balls and metrics defined by vector fields I. Basic properties, Acta Math., vol. 155 (1985), 103-147. Zbl0578.32044MR86k:46049
- [P] A. PARMEGGIANI, Subunit Balls for Symbols of Pseudodifferential Operators, Princeton Doctoral Dissertation, 1992 (to appear in Advances in Math.). Zbl0940.35214
- [RS] L. ROTHSCHILD and E.M. STEIN, Hypoelliptic differential operators and nilpotent groups, Acta Math., vol. 137 (1976), 247-320. Zbl0346.35030MR55 #9171
- [W] H. WHITNEY, Elementary structure of real algebraic varieties, Annals of Math., vol. 66 (1957), 545-556. Zbl0078.13403MR20 #2342
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.